Mechanical properties in friction stir lap welding of AA 6061-T6 and AISI 304

2020 ◽  
Vol 14 (6) ◽  
2016 ◽  
Vol 652 ◽  
pp. 136-144 ◽  
Author(s):  
Raju Prasad Mahto ◽  
Rahul Bhoje ◽  
Surjya K. Pal ◽  
Harshadeep S. Joshi ◽  
Siddhartha Das

2021 ◽  
Author(s):  
Antonello Astarita ◽  
Fausto Tucci ◽  
Alessia Teresa Silvestri ◽  
Michele Perrella ◽  
Luca Boccarusso ◽  
...  

Abstract This paper deals with the dissimilar friction stir lap welding of AA2198 and AA7075 sheets. The influence of processing parameters, namely welding speed and tool rotational speed on joint features, microstructure, and mechanical properties were investigated implementing a full factorial design of experiments. During the welding process, axial and transversal forces were continuously measured using a dedicated sensed fixture aiming at the correlation of this processing parameter with the quality of the achieved joints. The reported outcomes showed a very narrow processing window in which it was possible to avoid the formation of defects while the formation of an hook was observed for all the joints welded. The influence of the weld bead morphology on the lap shear strength was elucidated proving that the strength is ruled by the hook morphology. A correlation between the process parameters and the forces arising was also attempted. The final microstructure of the joints was studied and explained and also compared with the microhardness results.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5335 ◽  
Author(s):  
Changshu He ◽  
Zhiqiang Zhang ◽  
Ying Li ◽  
Jingxun Wei ◽  
Menggang Zhai ◽  
...  

In this work, friction stir lap welding (FSLW) and ultrasonic-assisted friction stir lap welding (UAFSLW) was applied to 6-mm-thick 7075-T6 alloy sheets using three welding tools with the same process parameters. The joint formation, microstructural characteristics, and mechanical properties of the resulting lap joints were then investigated. The results showed that ultrasonic vibration significantly promoted the flow of metal at the interface, enlarged the size of the stirred zone (SZ), and reduced the angle between the hook defect and the interface. During lap shear testing, the FSLW and UAFSLW joints fractured in a similar manner. The fracture modes included tensile fracture, shear fracture, and a mixture of both. Cold lap and hook defects may have served as crack-initiation zones within the joint. Under configuration A (i.e., upper sheet on the retreating side (RS)), all joints failed in the shear-fracture mode. The effective lap width (ELW) of the joint welded using tool T2 was the greatest. This resulted in a higher shear fracture strength. The maximum shear fracture strength of the UAFSLW joint was 663.1 N/mm. Under configuration B (i.e., upper sheet on the advancing side (AS)), the shear fracture strength was greatly affected by the fracture mode. The highest shear fracture strength of the UAFSLW joint, 543.7 N/mm, was welded by tool T3. Thus, under otherwise identical conditions, UAFSLW joints can withstand a greater fracture shear strength than FSLW joints, as ultrasonic vibration helps to mix the material at the interface, thus, enlarging the SZ and diminishing the cold lap defects.


Author(s):  
M. Shamsujjoha ◽  
Bharat K. Jasthi ◽  
Michael West ◽  
Christian Widener

Steel and Al were friction stir lap welded using two different W-25% Re-4% HfC pin tools, having two different pin diameters and pin lengths. The effects of plunge depth, bonding area, and top sheet positions on the microstructure and mechanical properties were investigated. Morphology of the joint interface showed severe steel flash on the retreating side, which controlled the joint strength when the top sheet was placed on the retreating side. A joint efficiency of 58% was achieved when right-handed lap welds were made using the pin tool with longer pin length.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 498
Author(s):  
Lingfei Meng ◽  
Shujin Chen ◽  
Jiaqi Zhang ◽  
Di Wang ◽  
Hao Zhang ◽  
...  

Friction stir lap welding (FSLW) of 6061-T6 aluminium sheet and DX51D galvanized steel sheet was carried out by adding zinc foil to the lap interface and studying the influence of the zinc foil on the formation mechanisms and mechanical properties. The influence of the thickness of zinc foil, the plunge depth of the shoulder and the shape of the tools on the mechanical properties of the weld are discussed. Zinc foil reduced the generation of brittle intermetallic compounds, such as Fe4Al13. During the welding process, the axial force was small due to the high rotating speed. Liquid zinc was retained at the interface, where eutectic Al–Zn with low melting point and an Fe–Zn compound were generated to achieve the metallurgical combination of aluminium and steel. The fracture was located in the heat affected zone (HAZ) of the 6061-T6 base aluminium. The results showed that when the zinc foil was too thin, there was less zinc content at the interface; the resulting Al–Zn eutectic had low melting point, was not fully spread and had poor continuity, resulting in poor mechanical properties. When the zinc foil was too thick, a large amount of zinc-based solid solution was generated at the interface, and most of the fracture occurred in the zinc-rich layer.


Sign in / Sign up

Export Citation Format

Share Document