SELECTION OF NATURAL FIBER REINFORCED COMPOSITIES FOR WIND TURBINE BLADES

2020 ◽  
Vol 7 (10) ◽  
Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 622
Author(s):  
Yasser Elhenawy ◽  
Yasser Fouad ◽  
Haykel Marouani ◽  
Mohamed Bassyouni

This study aims to evaluate the effect of functionalized multi-walled carbon nanotubes (MWCNTs) on the performance of glass fiber (GF)-reinforced polypropylene (PP) for wind turbine blades. Support for theoretical blade movement of horizontal axis wind turbines (HAWTs), simulation, and analysis were performed with the Ansys computer package to gain insight into the durability of polypropylene-chopped E-glass for application in turbine blades under aerodynamic, gravitational, and centrifugal loads. Typically, polymer nanocomposites are used for small-scale wind turbine systems, such as for residential applications. Mechanical and physical properties of material composites including tensile and melt flow indices were determined. Surface morphology of polypropylene-chopped E-glass fiber and functionalized MWCNTs nanocomposites showed good distribution of dispersed phase. The effect of fiber loading on the mechanical properties of the PP nanocomposites was investigated in order to obtain the optimum composite composition and processing conditions for manufacturing wind turbine blades. The results show that adding MWCNTs to glass fiber-reinforced PP composites has a substantial influence on deflection reduction and adding them to chopped-polypropylene E-glass has a significant effect on reducing the bias estimated by finite element analysis.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1124
Author(s):  
Leon Mishnaevsky Mishnaevsky

Various scenarios of end-of-life management of wind turbine blades are reviewed. “Reactive” strategies, designed to deal with already available, ageing turbines, installed in the 2000s, are discussed, among them, maintenance and repair, reuse, refurbishment and recycling. The main results and challenges of “pro-active strategies”, designed to ensure recyclability of new generations of wind turbines, are discussed. Among the main directions, the wind turbine blades with thermoplastic and recyclable thermoset composite matrices, as well as wood, bamboo and natural fiber-based composites were reviewed. It is argued that repair and reuse of wind turbine blades, and extension of the blade life has currently a number of advantages over other approaches. While new recyclable materials have been tested in laboratories, or in some cases on small or medium blades, there are remaining technological challenges for their utilization in large wind turbine blades.


2019 ◽  
Vol 38 (12) ◽  
pp. 567-577 ◽  
Author(s):  
Junlei Chen ◽  
Jihui Wang ◽  
Aiqing Ni

Based on the increasing number of end of life wind turbine blades and the emphasis on resource conservation and environmental protection, more and more attention has been paid to the recycling and reuse of thermoset composite materials for wind turbine blades. This paper gives an overview of the main recycling technologies and reuse of recycled products. Current recycling technology still needs more work to move from laboratory stage to commercial production. Cheaper, less polluting, and more efficient recycling technologies are needed, along with remanufacturing technologies for high performance products can be obtained to expand the market for recycled materials. In addition, new environmentally friendly blade materials should be designed from the source, using natural fiber, modified thermosetting resin and recyclable thermoplastic resin, which make wind energy a truly clean energy.


Sign in / Sign up

Export Citation Format

Share Document