scholarly journals Oxygen-Glucose Deprivation and Reoxygenation as an In Vitro Ischemia-Reperfusion Injury Model for Studying Blood-Brain Barrier Dysfunction

Author(s):  
Himakarnika Alluri ◽  
Chinchusha Anasooya Shaji ◽  
Matthew L. Davis ◽  
Binu Tharakan
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Siyi Wu ◽  
Zhao Li ◽  
Mengling Ye ◽  
Chunxia Liu ◽  
Hao Liu ◽  
...  

Lung ischemia reperfusion injury (LIRI) is a complex pathophysiological process with high morbidity and mortality. An important pathophysiological characteristic of LIRI is endothelial barrier dysfunction, although the mechanism involved in this process remains unclear. VX765, a specific caspase-1 inhibitor, has been shown to have a protective effect against several diseases including sepsis, atherosclerosis, and glial inflammatory disease. The objective of this study was to determine whether VX765 had a protective effect in LIRI. The results showed that lung ischemia/reperfusion (I/R) and oxygen/glucose deprivation and reoxygenation (OGD/R) induced endothelial pyroptosis and barrier dysfunction characterized by an inflammatory response. Treatment with VX765 successfully alleviated I/R- and OGD/R-induced endothelial pyroptosis and barrier dysfunction by inhibiting caspase-1 in vivo and in vitro. In conclusion, these findings showed that VX765 provided effective protection against lung I/R-induced endothelial pyroptosis and barrier dysfunction.


2012 ◽  
Vol 1437 ◽  
pp. 127-133 ◽  
Author(s):  
Xianwei Zeng ◽  
Karam Asmaro ◽  
Changhong Ren ◽  
Mingqing Gao ◽  
Changya Peng ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Dandan Zhao ◽  
Qing Li ◽  
Qiuping Huang ◽  
Xuguang Li ◽  
Min Yin ◽  
...  

Background. The intravenous anesthetic propofol is reported to be a cardioprotective agent against ischemic-reperfusion injury in the heart. However, the regulatory mechanism still remains unclear.Methods. In this study, we used H9c2 cell line under condition of oxygen glucose deprivation (OGD) followed by reperfusion (OGD/R) to inducein vitrocardiomyocytes ischemia-reperfusion injury. Propofol (5, 10, and 20 μM) was added to the cell cultures before and during the OGD/R phases to investigate the underlying mechanism.Results. Our data showed that OGD/R decreased cell viability, and increased lactate dehydrogenase leakage, and reactive oxygen species and malondialdehyde production in H9c2 cells, all of which were significantly reversed by propofol. Moreover, we found that propofol increased both the activities and protein expressions of superoxide dismutase and catalase. In addition, propofol increased FoxO1 expression in a dose-dependent manner and inhibited p-AMPK formation significantly.Conclusions. These results indicate that the propofol might exert its antioxidative effect through FoxO1 in H9c2 cells, and it has a potential therapeutic effect on cardiac disorders involved in oxidative stress.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Chong Huang ◽  
Yan Chen ◽  
Bin Lai ◽  
Yan-Xia Chen ◽  
Cheng-Yun Xu ◽  
...  

Abstract Background Acute kidney injury (AKI) is a major kidney disease with poor clinical outcome. SP1, a well-known transcription factor, plays a critical role in AKI and subsequent kidney repair through the regulation of various cell biologic processes. However, the underlying mechanism of SP1 in these pathological processes remain largely unknown. Methods An in vitro HK-2 cells with anoxia-reoxygenation injury model (In vitro simulated ischemic injury disease) and an in vivo rat renal ischemia-reperfusion injury model were used in this study. The expression levels of SP1, miR-205 and PTEN were detected by RT-qPCR, and the protein expression levels of SP1, p62, PTEN, AKT, p-AKT, LC3II, LC3I and Beclin-1 were assayed by western blot. Cell proliferation was assessed by MTT assay, and the cell apoptosis was detected by flow cytometry. The secretions of IL-6 and TNF-α were detected by ELISA. The targeted relationship between miR-205 and PTEN was confirmed by dual luciferase report assay. The expression and positioning of LC-3 were observed by immunofluorescence staining. TUNEL staining was used to detect cell apoptosis and immunohistochemical analysis was used to evaluate the expression of SP1 in renal tissue after ischemia-reperfusion injury in rats. Results The expression of PTEN was upregulated while SP1 and miR-205 were downregulated in renal ischemia-reperfusion injury. Overexpression of SP1 protected renal tubule cell against injury induced by ischemia-reperfusion via miR-205/PTEN/Akt pathway mediated autophagy. Overexpression of SP1 attenuated renal ischemia-reperfusion injury in rats. Conclusions SP1 overexpression restored autophagy to alleviate acute renal injury induced by ischemia-reperfusion through the miR-205/PTEN/Akt pathway.


Sign in / Sign up

Export Citation Format

Share Document