An In Vitro Oxygen–Glucose Deprivation Model for Studying Ischemia–Reperfusion Injury of Neuronal Cells

Author(s):  
Myoung-gwi Ryou ◽  
Robert T. Mallet
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Dandan Zhao ◽  
Qing Li ◽  
Qiuping Huang ◽  
Xuguang Li ◽  
Min Yin ◽  
...  

Background. The intravenous anesthetic propofol is reported to be a cardioprotective agent against ischemic-reperfusion injury in the heart. However, the regulatory mechanism still remains unclear.Methods. In this study, we used H9c2 cell line under condition of oxygen glucose deprivation (OGD) followed by reperfusion (OGD/R) to inducein vitrocardiomyocytes ischemia-reperfusion injury. Propofol (5, 10, and 20 μM) was added to the cell cultures before and during the OGD/R phases to investigate the underlying mechanism.Results. Our data showed that OGD/R decreased cell viability, and increased lactate dehydrogenase leakage, and reactive oxygen species and malondialdehyde production in H9c2 cells, all of which were significantly reversed by propofol. Moreover, we found that propofol increased both the activities and protein expressions of superoxide dismutase and catalase. In addition, propofol increased FoxO1 expression in a dose-dependent manner and inhibited p-AMPK formation significantly.Conclusions. These results indicate that the propofol might exert its antioxidative effect through FoxO1 in H9c2 cells, and it has a potential therapeutic effect on cardiac disorders involved in oxidative stress.


2018 ◽  
Vol 50 (2) ◽  
pp. 783-797 ◽  
Author(s):  
Xianzhang Zeng ◽  
Hongliang Ren ◽  
Yana Zhu ◽  
Ruru Zhang ◽  
Xinxin Xue ◽  
...  

Background/Aims: Peri-operative cerebral ischemia reperfusion injury is one of the most serious peri-operative complications that can be aggravated in patients with diabetes. A previous study showed that microglia NOX2 (a NADPH oxidase enzyme) may play an important role in this process. Here, we investigated whether increased microglial derived gp91phox, also known as NOX2, reduced oxygen glucose deprivation (OGD) after induction of hyperglycemia (HG). Methods: A rat neuronal-microglial in vitro co-culture model was used to determine the effects of gp91phox knockdown on OGD after HG using six treatment groups: A rat microglia and neuron co-culture model was established and divided into the following six groups: high glucose + scrambled siRNA transfection (HG, n = 5); HG + gp91phoxsiRNA transfection (HG-gp91siRNA, n = 5); oxygen glucose deprivation + scrambled siRNA transfection (OGD, n = 5); OGD + gp91phoxsiRNA transfection (OGD-gp91siRNA, n = 5); HG + OGD + scrambled siRNA transfection (HG-OGD, n = 5); and HG + OGD + gp91phoxsiRNA transfection (HG-OGD-gp91siRNA, n = 5). The neuronal survival rate was measured by the MTT assay, while western blotting was used to determine gp91phox expression. Microglial derived ROS and neuronal apoptosis rates were analyzed by flow cytometry. Finally, the secretion of cytokines, including IL-6, IL-8, TNF-α, and 8-iso-PGF2α was determined using an ELISA kit. Results: Neuronal survival rates were significantly decreased by HG and OGD, while knockdown of gp91phox reversed these rates. ROS production and cytokine secretion were also significantly increased by HG and OGD but were significantly inhibited by knockdown of gp91phoxsiRNA. Conclusion: Knockdown of gp91phoxsiRNA significantly reduced oxidative stress and the inflammatory response, and alleviated neuronal damage after HG and OGD treatment in a rat neuronal-microglial co-culture model.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Siyi Wu ◽  
Zhao Li ◽  
Mengling Ye ◽  
Chunxia Liu ◽  
Hao Liu ◽  
...  

Lung ischemia reperfusion injury (LIRI) is a complex pathophysiological process with high morbidity and mortality. An important pathophysiological characteristic of LIRI is endothelial barrier dysfunction, although the mechanism involved in this process remains unclear. VX765, a specific caspase-1 inhibitor, has been shown to have a protective effect against several diseases including sepsis, atherosclerosis, and glial inflammatory disease. The objective of this study was to determine whether VX765 had a protective effect in LIRI. The results showed that lung ischemia/reperfusion (I/R) and oxygen/glucose deprivation and reoxygenation (OGD/R) induced endothelial pyroptosis and barrier dysfunction characterized by an inflammatory response. Treatment with VX765 successfully alleviated I/R- and OGD/R-induced endothelial pyroptosis and barrier dysfunction by inhibiting caspase-1 in vivo and in vitro. In conclusion, these findings showed that VX765 provided effective protection against lung I/R-induced endothelial pyroptosis and barrier dysfunction.


2020 ◽  
Author(s):  
shengxin Wang ◽  
Xiangli Yan ◽  
Yingying He ◽  
Haozhen Zheng ◽  
PengCheng Wang ◽  
...  

Abstract Background Paeoniflorin (PF) and calycosin-7-glucoside (CG) play a role in protecting against brain damage following cerebral ischemia. However, the mechanism of action of PF in combination with CG (PF + CG) against ischemia/reperfusion injury remains unclear. Methods The aim of this study was to investigate the protective role of PF + CG on ischemia/reperfusion injury in vivo and in vitro, as well as its potential mechanism of action indicating that PF + CG attenuates middle cerebral artery occlusion (MCAO) /oxygen-glucose deprivation reperfusion (OGD/R) injury via the PI3K/AKT pathway. MCAO rat model was prepared by modified suture method, and behavioral scoring, cerebral infarction area, brain tissue water content measurement, using PI3K, p-PI3K, AKT, p-AKT, Bcl-2, Bax, GSK-3β protein expression as indicators, observe the effect of PI3K / AKT signaling pathway inhibitor LY294002 on the anti-ischemia-reperfusion effect of PF + CG. Oxygen deprivation method was used to prepare the OGD/R model, CCK-8 was used to determine the survival rate of HT22 cells, the contents of SOR, ROS, MDA, and LHD were determined, and apoptosis was detected by flow cytometry and mitochondrial membrane potential, using PI3K, p-PI3K, AKT, p-AKT, Bcl-2, Bax, GSK-3β protein expression as indicators, observe the effect of PI3K/AKT signaling pathway inhibitor LY294002 on the anti- oxidative and glucose deprivation effect of PF + CG. Results The animal studies showed that PF + CG significantly decreased neurobehavioral deficits, cerebral infarct volume, and brain edema; ameliorated histopathological damage in model rats; increased levels of PI3K, AKT, p-PI3K, p-AKT, and Bcl-2; and reduced BAX and GSK-3β expression. After treatment with PF + CG, the morphology and number of cells in brain tissue were restored to normal, demonstrating a therapeutic effect in cerebral ischemia-reperfusion injury. Results of further studies revealed that, in vitro, PF + CG has a therapeutic effect to enhance cell vitality; elevate levels of superoxide dismutase (SOD); reduce levels of reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA); decrease apoptosis rate; increase levels of PI3K, AKT, p-PI3K, p-AKT, and Bcl-2; and reduce BAX and GSK-3β expression. Conclusion These results demonstrate that PF + CG has a positive therapeutic effect on ischemia/reperfusion and OGD/R injury, and the mechanism is attributed to activation of the PI3K/AKT signaling pathway.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Bingwu Zhong ◽  
Zhiping Hu ◽  
Jieqiong Tan ◽  
Tonglin Lu ◽  
Qiang Lei ◽  
...  

Cerebral ischemia-reperfusion injury plays an important role in the development of tissue injury after acute ischemic stroke. Finding effective neuroprotective agents has become a priority in the treatment of ischemic stroke. The Golgi apparatus (GA) is a pivotal organelle and its protection is an attractive target in the treatment of cerebral ischemia-reperfusion injury. Protective effects of Hsp20, a potential cytoprotective agent due to its chaperone-like activity and involvement in regulation of many vital processes, on GA were assessed in an ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces Golgi fragmentation, apoptosis, and p115 cleavage in N2a cells. However, transfection with Hsp20 significantly attenuates OGDR-induced Golgi fragmentation and apoptosis. Hsp20 interacts with Bax, decreases FasL and Bax expression, and inhibits caspases 3 and p115 cleavage in N2a cells exposed to OGDR. Our data demonstrate that increased Hsp20 expression protects against OGDR-induced Golgi fragmentation and apoptosis, likely through interaction with Bax and subsequent amelioration of the OGDR-induced elevation in p115 cleavage via the Fas/FasL signaling pathway. This neuroprotective potential of Hsp20 against OGDR insult and the underlying mechanism will pave the way for its potential clinical application for cerebral ischemia-reperfusion related disorders.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Bing Fu ◽  
Qinghong Zeng ◽  
Zhaoting Zhang ◽  
Mingyue Qian ◽  
Jiechun Chen ◽  
...  

Green tea is one of the most beverages with antioxidants and nutrients. As one of the major components of green tea, (-)-epicatechin gallate (ECG) was evaluated for its antioxidative properties in the present study. Cell proliferation assay, tube formation, cell migration, apoptosis, and autophagy were performed in human brain microvascular endothelial cells (HBMVECs) after oxygen-glucose deprivation/reoxygenation (OGD/R) to investigate potential anti-ischemia/reperfusion injury properties of ECG in vitro. Markers of oxidative stress as ROS, LDH, MDA, and SOD were further assayed in our study. Data indicated that ECG could affect neovascularization and promote cell proliferation, tube formation, and cell migration while inhibiting apoptosis and autophagy through affecting VEGF, Bcl-2, BAX, LC3B, caspase 3, mTOR, and Beclin-1 expression. All the data suggested that ECG may be protective for the brain against ischemia/reperfusion injury by promoting neovascularization, alleviating apoptosis and autophagy, and promoting cell proliferation in HBMVECs of OGD/R.


Sign in / Sign up

Export Citation Format

Share Document