scholarly journals VX765, a Specific Caspase-1 Inhibitor, Alleviates Lung Ischemia Reperfusion Injury by Suppressing Endothelial Pyroptosis and Barrier Dysfunction

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Siyi Wu ◽  
Zhao Li ◽  
Mengling Ye ◽  
Chunxia Liu ◽  
Hao Liu ◽  
...  

Lung ischemia reperfusion injury (LIRI) is a complex pathophysiological process with high morbidity and mortality. An important pathophysiological characteristic of LIRI is endothelial barrier dysfunction, although the mechanism involved in this process remains unclear. VX765, a specific caspase-1 inhibitor, has been shown to have a protective effect against several diseases including sepsis, atherosclerosis, and glial inflammatory disease. The objective of this study was to determine whether VX765 had a protective effect in LIRI. The results showed that lung ischemia/reperfusion (I/R) and oxygen/glucose deprivation and reoxygenation (OGD/R) induced endothelial pyroptosis and barrier dysfunction characterized by an inflammatory response. Treatment with VX765 successfully alleviated I/R- and OGD/R-induced endothelial pyroptosis and barrier dysfunction by inhibiting caspase-1 in vivo and in vitro. In conclusion, these findings showed that VX765 provided effective protection against lung I/R-induced endothelial pyroptosis and barrier dysfunction.

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Ying Dong Du ◽  
Wen Yuan Guo ◽  
Cong Hui Han ◽  
Ying Wang ◽  
Xiao Song Chen ◽  
...  

AbstractDespite N6-methyladenosine (m6A) is functionally important in various biological processes, its role and the underlying regulatory mechanism in the liver remain largely unexplored. In the present study, we showed that fat mass and obesity-associated protein (FTO, an m6A demethylase) was involved in mitochondrial function during hepatic ischemia–reperfusion injury (HIRI). We found that the expression of m6A demethylase FTO was decreased during HIRI. In contrast, the level of m6A methylated RNA was enhanced. Adeno-associated virus-mediated liver-specific overexpression of FTO (AAV8-TBG-FTO) ameliorated the HIRI, repressed the elevated level of m6A methylated RNA, and alleviated liver oxidative stress and mitochondrial fragmentation in vivo and in vitro. Moreover, dynamin-related protein 1 (Drp1) was a downstream target of FTO in the progression of HIRI. FTO contributed to the hepatic protective effect via demethylating the mRNA of Drp1 and impairing the Drp1-mediated mitochondrial fragmentation. Collectively, our findings demonstrated the functional importance of FTO-dependent hepatic m6A methylation during HIRI and provided valuable insights into the therapeutic mechanisms of FTO.


Human Cell ◽  
2021 ◽  
Author(s):  
Jiaying Zhu ◽  
Zhu Zhu ◽  
Yipin Ren ◽  
Yukang Dong ◽  
Yaqi Li ◽  
...  

AbstractLINGO-1 may be involved in the pathogenesis of cerebral ischemia. However, its biological function and underlying molecular mechanism in cerebral ischemia remain to be further defined. In our study, middle cerebral artery occlusion/reperfusion (MACO/R) mice model and HT22 cell oxygen–glucose deprivation/reperfusion (OGD/R) were established to simulate the pathological process of cerebral ischemia in vivo and in vitro and to detect the relevant mechanism. We found that LINGO-1 mRNA and protein were upregulated in mice and cell models. Down-regulation LINGO-1 improved the neurological symptoms and reduced pathological changes and the infarct size of the mice after MACO/R. In addition, LINGO-1 interference alleviated apoptosis and promoted cell proliferation in HT22 of OGD/R. Moreover, down-regulation of LINGO-1 proved to inhibit nuclear translocation of p-NF-κB and reduce the expression level of p-JAK2 and p-STAT3. In conclusion, our data suggest that shLINGO-1 attenuated ischemic injury by negatively regulating NF-KB and JAK2/STAT3 pathways, highlighting a novel therapeutic target for ischemic stroke.


2018 ◽  
Vol 102 ◽  
pp. S708
Author(s):  
Ivan Linares ◽  
Agata Bartczak ◽  
Kaveh Farrokhi ◽  
Dagmar Kollmann ◽  
Moritz Kaths ◽  
...  

2011 ◽  
Vol 32 (2) ◽  
pp. 242-247 ◽  
Author(s):  
Amy E B Packard ◽  
Jason C Hedges ◽  
Frances R Bahjat ◽  
Susan L Stevens ◽  
Michael J Conlin ◽  
...  

Preconditioning induces ischemic tolerance, which confers robust protection against ischemic damage. We show marked protection with polyinosinic polycytidylic acid (poly-IC) preconditioning in three models of murine ischemia-reperfusion injury. Poly-IC preconditioning induced protection against ischemia modeled in vitro in brain cortical cells and in vivo in models of brain ischemia and renal ischemia. Further, unlike other Toll-like receptor (TLR) ligands, which generally induce significant inflammatory responses, poly-IC elicits only modest systemic inflammation. Results show that poly-IC is a new powerful prophylactic treatment that offers promise as a clinical therapeutic strategy to minimize damage in patient populations at risk of ischemic injury.


2020 ◽  
Vol 31 (3) ◽  
pp. 517-531 ◽  
Author(s):  
Sistiana Aiello ◽  
Manuel Alfredo Podestà ◽  
Pamela Y. Rodriguez-Ordonez ◽  
Francesca Pezzuto ◽  
Nadia Azzollini ◽  
...  

BackgroundIn donor kidneys subjected to ischemia-reperfusion injury during kidney transplant, phagocytes coexpressing the F4/80 and CD11c molecules mediate proinflammatory responses and trigger adaptive immunity in transplantation through antigen presentation. After injury, however, resident renal macrophages coexpressing these surface markers acquire a proreparative phenotype, which is pivotal in controlling inflammation and fibrosis. No data are currently available regarding the effects of transplant-induced ischemia-reperfusion injury on the ability of donor-derived resident renal macrophages to act as professional antigen-presenting cells.MethodsWe evaluated the phenotype and function of intragraft CD11c+F4/80+ renal macrophages after cold ischemia. We also assessed the modifications of donor renal macrophages after reversible ischemia-reperfusion injury in a mouse model of congeneic renal transplantation. To investigate the role played by IL-1R8, we conducted in vitro and in vivo studies comparing cells and grafts from wild-type and IL-R8–deficient donors.ResultsCold ischemia and reversible ischemia-reperfusion injury dampened antigen presentation by renal macrophages, skewed their polarization toward the M2 phenotype, and increased surface expression of IL-1R8, diminishing activation mediated by toll-like receptor 4. Ischemic IL-1R8–deficient donor renal macrophages acquired an M1 phenotype, effectively induced IFNγ and IL-17 responses, and failed to orchestrate tissue repair, resulting in severe graft fibrosis and aberrant humoral immune responses.ConclusionsIL-1R8 is a key regulator of donor renal macrophage functions after ischemia-reperfusion injury, crucial to guiding the phenotype and antigen-presenting role of these cells. It may therefore represent an intriguing pathway to explore with respect to modulating responses against autoantigens and alloantigens after kidney transplant.


Sign in / Sign up

Export Citation Format

Share Document