An Explant System for Time-Lapse Imaging Studies of Olfactory Circuit Assembly in Drosophila

Author(s):  
Tongchao Li ◽  
Liqun Luo
Cell ◽  
2021 ◽  
Author(s):  
Tongchao Li ◽  
Tian-Ming Fu ◽  
Kenneth Kin Lam Wong ◽  
Hongjie Li ◽  
Qijing Xie ◽  
...  

2004 ◽  
Vol 166 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Yoshihiro H. Inoue ◽  
Matthew S. Savoian ◽  
Takao Suzuki ◽  
Endre Máthé ◽  
Masa-Toshi Yamamoto ◽  
...  

We address the relative roles of astral and central spindle microtubules (MTs) in cytokinesis of Drosophila melanogaster primary spermatocytes. Time-lapse imaging studies reveal that the central spindle is comprised of two MT populations, “interior” central spindle MTs found within the spindle envelope and “peripheral” astral MTs that probe the cytoplasm and initiate cleavage furrows where they contact the cortex and form overlapping bundles. The MT-associated protein Orbit/Mast/CLASP concentrates on interior rather than peripheral central spindle MTs. Interior MTs are preferentially affected in hypomorphic orbit mutants, and consequently the interior central spindle fails to form or is unstable. In contrast, peripheral MTs still probe the cortex and form regions of overlap that recruit the Pav-KLP motor and Aurora B kinase. orbit mutants have disorganized or incomplete anillin and actin rings, and although cleavage furrows initiate, they ultimately regress. Our work identifies a new function for Orbit/Mast/CLASP and identifies a novel MT population involved in cleavage furrow initiation.


2020 ◽  
Author(s):  
Aihua Mao ◽  
Linwei Li ◽  
Jie Liu ◽  
Mingming Zhang ◽  
Guozhu Ning ◽  
...  

AbstractThe paired pharyngeal arch arteries (PAAs) are transient blood vessels connecting the heart with the dorsal aorta during embryogenesis. Although PAA malformations often occur along with pharyngeal pouch defects, the functional interaction between these adjacent tissues remains largely unclear. Here we report that the ablation of pouches in zebrafish embryos impairs PAA progenitor specification and leads to the absence of PAA structures. Through time-lapse imaging studies, we reveal that the segmentation of pharyngeal pouches coincides spatiotemporally with the emergence of PAA progenitor clusters. These pouches physically associate with pharyngeal mesoderm in discrete regions and provide a niche microenvironment for PAA progenitor commitment by expressing BMP proteins. Specifically, tissue specific knockdown experiments demonstrate that pouch-derived BMP2a and BMP5 are the primary niche cues responsible for activating the BMP/Smad pathway in pharyngeal mesoderm, thereby promoting progenitor specification. In addition, BMP2a and BMP5 play a primary inductive function in the expression of the cloche gene npas4l in PAA progenitors. Mutation of the cloche locus represses the specification of PAA progenitors and generates ectopic muscle precursors in the pharyngeal mesoderm. Therefore, our results support a critical role of pharyngeal pouches in establishing a progenitor niche for PAA morphogenesis via BMP2a/5 expression.


2021 ◽  
Author(s):  
Tongchao Li ◽  
Tian-Ming Fu ◽  
Hongjie Li ◽  
Qijing Xie ◽  
David J. Luginbuhl ◽  
...  

Acta Naturae ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 88-96
Author(s):  
Yu. K. Doronin ◽  
I. V. Senechkin ◽  
L. V. Hilkevich ◽  
M. A. Kurcer

In order to estimate the diversity of embryo cleavage relatives to embryo progress (blastocyst formation), time-lapse imaging data of preimplantation human embryo development were used. This retrospective study is focused on the topographic features and time parameters of the cleavages, with particular emphasis on the lengths of cleavage cycles and the genealogy of blastomeres in 2- to 8-cell human embryos. We have found that all 4-cell human embryos have four developmental variants that are based on the sequence of appearance and orientation of cleavage planes during embryo cleavage from 2 to 4 blastomeres. Each variant of cleavage shows a strong correlation with further developmental dynamics of the embryos (different cleavage cycle characteristics as well as lengths of blastomere cycles). An analysis of the sequence of human blastomere divisions allowed us to postulate that the effects of zygotic determinants are eliminated as a result of cleavage, and that, thereafter, blastomeres acquire the ability of own syntheses, regulation, polarization, formation of functional contacts, and, finally, of specific differentiation. This data on the early development of human embryos obtained using noninvasive methods complements and extend our understanding of the embryogenesis of eutherian mammals and may be applied in the practice of reproductive technologies.


2019 ◽  
Vol 1 ◽  
pp. 204-210 ◽  
Author(s):  
Alyson Wilson ◽  
Stanley Serafin ◽  
Dilan Seckiner ◽  
Rachel Berry ◽  
Xanthé Mallett

Sign in / Sign up

Export Citation Format

Share Document