scholarly journals Design and Implementation of RFID Active Tags and Mutual Authentication Protocol with Ownership Transfer Stage

2017 ◽  
Vol 13 (1) ◽  
pp. 83-103
Author(s):  
Issam Hussein ◽  
Ramzy Ali ◽  
Basil Jasim

Radio frequency identification (RFID) technology is being used widely in the last few years. Its applications classifies into auto identification and data capturing issues. The purpose of this paper is to design and implement RFID active tags and reader using microcontroller ATmega328 and 433 MHz RF links. The paper also includes a proposed mutual authentication protocol between RFID reader and active tags with ownership transfer stage. Our protocol is a mutual authentication protocol with tag’s identifier updating mechanism. The updating mechanism has the purpose of providing forward security which is important in any authentication protocol to prevent the attackers from tracking the past transactions of the compromised tags. The proposed protocol gives the privacy and security against all famous attacks that RFID system subjected for due to the transfer of data through unsecure wireless channel, such as replay, denial of service, tracking and cloning attacks. It also ensures ownership privacy when the ownership of the tag moves to a new owner.

2018 ◽  
Vol 14 (8) ◽  
pp. 155014771879512 ◽  
Author(s):  
Madiha Khalid ◽  
Umar Mujahid ◽  
Muhammad Najam-ul-Islam

Internet of Things is one of the most important components of modern technological systems. It allows the real time synchronization and connectivity of devices with each other and with the rest of the world. The radio frequency identification system is used as node identification mechanism in the Internet of Thing networks. Since Internet of Things involve wireless channel for communication that is open for all types of malicious adversaries, therefore many security protocols have been proposed to ensure encryption over wireless channel. To reduce the overall cost of radio frequency identification enabled Internet of Thing network security, the researchers use simple bitwise logical operations such as XOR, AND, OR, and Rot and have proposed many ultralightweight mutual authentication protocols. However, almost all the previously proposed protocols were later found to be vulnerable against several attack models. Recently, a new ultralightweight mutual authentication protocol has been proposed which involves only XOR and Rotation functions in its design and claimed to be robust against all possible attack models. In this article, we have performed cryptanalysis of this recently proposed ultralightweight mutual authentication protocol and found many pitfalls and vulnerabilities in the protocol design. We have exploited weak structure of the protocol messages and proposed three attacks against the said protocol: one desynchronization and two full disclosure attacks.


2017 ◽  
Vol 27 (02) ◽  
pp. 1850033 ◽  
Author(s):  
Umar Mujahid ◽  
M. Najam-ul-Islam ◽  
Madiha Khalid

Internet of Things (IoTs) are becoming one of the integral parts of our lives, as all of the modern devices including pervasive systems use internet for its connectivity with the rest of the world. The Radio Frequency IDentification (RFID) provides unique identification and nonline of sight capabilities, therefore plays a very important role in development of IoTs. However, the RFID systems incorporate wireless channel for communication, therefore have some allied risks to the system from threat agents. In order to prevent the system from malicious activities in a cost effective way, numerous Ultralightweight Mutual Authentication Protocols (UMAPs) have been proposed since last decade. These UMAPs mainly involve simple bitwise logical operators such as XOR, AND, OR, etc., in their designs and can be implemented with extremely low cost RFID tags. However, most of the UMAP designers didn’t provide the proper hardware approximations of their UMAPs and presented only theoretical results which mostly mislead the reader. In this paper, we have addressed this problem by reporting our experiences with FPGA and ASIC-based implementation of UMAP named psuedo Kasami code-based Mutual Authentication Protocol (KMAP[Formula: see text]. Further, we have also improved the structure of the KMAP protocol to overcome the previously highlighted attack model. The hardware implementation results show that KMAP[Formula: see text] successfully conform to EPC-C1G2 tags and can be implemented using less than 4[Formula: see text]K GE (for 32-bit word length).


Author(s):  
Ioana Lasc ◽  
Reiner Dojen ◽  
Tom Coffey

Many peer-to-peer security protocols proposed for wireless communications use one-time shared secrets for authentication purposes. This paper analyses online update mechanisms for one-time shared secrets. A new type of attack against update mechanisms, called desynchronisation attack, is introduced. This type of attack may lead to a permanent denial of service condition. A case study demonstrates the effectiveness of desynchronisation attacks against a security protocol for mobile satellite communications. A new mutual authentication protocol for satellite communications, incorporating a resynchronisation capability, is proposed to counter the disruptive effects of desynchronisation attacks. The new protocol has an esynchronisation phase that is initiated whenever desynchronisation is suspected. Thus, the possibility of causing permanent denial of service conditions by mounting desynchronisation attacks is eliminated. A security analysis of the proposed protocol establishes its resistance against attacks like replay attacks, dictionary attacks, and desynchronisation attacks.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2957 ◽  
Author(s):  
Feng Zhu ◽  
Peng Li ◽  
He Xu ◽  
Ruchuan Wang

Radio frequency identification is one of the key techniques for Internet of Things, which has been widely adopted in many applications for identification. However, there exist various security and privacy issues in radio frequency identification (RFID) systems. Particularly, one of the most serious threats is to clone tags for the goal of counterfeiting goods, which causes great loss and danger to customers. To solve these issues, lots of authentication protocols are proposed based on physical unclonable functions that can ensure an anti-counterfeiting feature. However, most of the existing schemes require secret parameters to be stored in tags, which are vulnerable to physical attacks that can further lead to the breach of forward secrecy. Furthermore, as far as we know, none of the existing schemes are able to solve the security and privacy problems with good scalability. Since many existing schemes rely on exhaustive searches of the backend server to validate a tag and they are not scalable for applications with a large scale database. Hence, in this paper, we propose a lightweight RFID mutual authentication protocol with physically unclonable functions (PUFs). The performance analysis shows that our proposed scheme can ensure security and privacy efficiently in a scalable way.


2017 ◽  
Vol 10 (3) ◽  
pp. 179
Author(s):  
Adarsh Kumar ◽  
Krishna Gopal ◽  
Alok Aggarwal

Internet of Things (IoT) is a pervasive environment to interconnect the things like: smart objects, devices etc. in a structure like internet. Things can be interconnected in IoT if these are uniquely addressable and identifiable. Radio Frequency Identification (RFID) is one the important radio frequency based addressing scheme in IoT. Major security challenge in resource constraint RFID networks is how to achieve traditional CIA security i.e. Confidentiality, Integrity and Authentication. Computational and communication costs for Lightweight Mutual Authentication Protocol (LMAP), RFID mutual Authentication Protocol with Permutation (RAPP) and kazahaya authentication protocols are analyzed. These authentication protocols are modeled to analyze the delays using lightweight modeling language. Delay analysis is performed using alloy model over LMAP, RAPP and kazahaya authentication protocols where one datacenter (DC) is connected to different number of readers (1,5 or 10) with connectivity to 1, 5 or 25 tags associated with reader and its results show that for LMAP delay varies from 30-156 msec, for RAPP from 31-188 while for kazahaya from 61-374 msec. Further, performance of RFID authentication protocols is analyzed for group construction through more than one DC (1,5 or 10) with different number of readers (10, 50 or 100) and tags associated with these readers (50, 500, 1000) and results show that DC based binary tree topology with LMAP authentication protocol is having a minimum delay for 50 or 100 readers. Other authentication protocols fail to give authentication results because of large delays in the network. Thus, RAPP and Kazahaya are not suitable for scenarios where there is large amount of increase in number of tags or readers.


Sign in / Sign up

Export Citation Format

Share Document