scholarly journals A Review of CZTS Thin Film Solar Cell Technology

Author(s):  
Md. Fakhrul Islam ◽  
Nadhrah Md Yatim ◽  
Mohd Azman Hashim@Ismail

Copper Zinc Tin Sulfide (CZTS) solar cells have recently attracted attention as a potential low-cost earth abundant replacement for CIGS cells. This is due to their constituent’s Zn and Sn are non-toxic and earth-abundant compare to the elements of In and Ga in CIGS. Thus, aiming to analyse solar cells free from the environmental contaminant, CZTS is viewed as a potential candidate as the absorber for the next generation thin film solar cells. However, the conversion efficiency of CZTS based solar cells reported which is relatively low (highest conversion efficiency recorded is 12.5%) from the theoretical conversion efficiency limit of 32.2%. This is due to the low fill factor (FF), open circuit voltage (Voc) and current density (Jsc). In this study analysis of the different CZTS based solar cells and its synthesis methods will be reviewed. The effect of the compositional change and various structure in the CZTS, different buffer layers with their interfaces are thoroughly studied. The challenges regarding improving the conversion efficiency of CZTS solar cells and their future in the thin film solar cell application are discussed.

2011 ◽  
Vol 21 (1) ◽  
pp. 72-76 ◽  
Author(s):  
Byungha Shin ◽  
Oki Gunawan ◽  
Yu Zhu ◽  
Nestor A. Bojarczuk ◽  
S. Jay Chey ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 6562-6570 ◽  
Author(s):  
Fang Qin Zeng ◽  
Yan Qing Lai ◽  
Zi Li Han ◽  
Boon K. Ng ◽  
Zhi An Zhang ◽  
...  

A CZTSSe thin film solar cell was fabricated by a sol–gel method with an efficiency of 8.08%.


2014 ◽  
Vol 1638 ◽  
Author(s):  
Hongtao Cui ◽  
Xiaolei Liu ◽  
Xiaojing Hao ◽  
Fangyang Liu ◽  
Ning Song ◽  
...  

ABSTRACTThe focus of this work is on back contact improvement for sputtered CZTS thin film solar cells. Three methods have been investigated including a thin Ag coating, a thin ZnO coating on the Mo back contact and rapid thermal annealing of the back contact. All of these methods have been found to reduce defects such as voids as well as secondary phases at the back contact region and inhibit the formation of MoS2. Consequently all the mothods effectively enhances Voc, Jsc, FF and therefore efficiency significantly.


2013 ◽  
Vol 712-715 ◽  
pp. 309-312 ◽  
Author(s):  
Ming Kun Xu

P+a-SiC/ I nc-Si/N+a-Si structure solar cells is simulated by AMPS-1D program package to characterize the new thin film solar cell. In order to analyze the characteristics of the device, the thickness of layer are considered. The results show that the thickness of layer and the value of layer have a great effect on the conversion efficiency. Our results suggest a high performance P a-SiC/ I nc-Si/N a-Si structure solar cells with high efficiency of 14.411% and fill factor of 0.738. The simulation result is potentially valuable in exploring gradual bandgap P+a-SiC/I nc-Si/N+a-Si structure solar cells with high performance.


RSC Advances ◽  
2015 ◽  
Vol 5 (95) ◽  
pp. 77565-77571 ◽  
Author(s):  
Thi Hiep Nguyen ◽  
Wilman Septina ◽  
Shotaro Fujikawa ◽  
Feng Jiang ◽  
Takashi Harada ◽  
...  

A CZTS-based thin film solar cell with a powder conversion efficiency of 5.8% was obtained by using facile spray pyrolysis deposition followed by annealing.


2011 ◽  
Vol 685 ◽  
pp. 60-64 ◽  
Author(s):  
Shui Yang Lien ◽  
Meng Jia Yang ◽  
Yang Shih Lin ◽  
Chia Fu Chen ◽  
Po Hung Lin ◽  
...  

It is widely accepted that graded buffer layer between the p-layer and i-layer increase the efficiency of amorphous silicon solar cells. The open-circuit voltage (Voc), short current density (Jsc) and fill factor (FF) of the thin film solar cell are obviously increased. In the present study, hydrogenated amorphous silicon (a-Si:H) thin film solar cells have been fabricated by 27.12 MHz plasma enhanced chemical vapor deposition (PECVD). We discussed the three conditions at the p/i interface without buffer layer, buffer layer and graded buffer layer of thin film solar cells by TCAD software. The influences of the performance of the solar cell with the different buffer layer are investigated. The cell with graded buffer layer has higher efficiency compared with the cells without buffer layer and buffer layer. The graded buffer layer enhances the conversion efficiency of the solar cell by improving Vocand FF. It could be attributed to a reduction of interface recombination rate near the junction. The best performance of conversion efficiency (η)=8.57% (Voc=0.81 V, Jsc=15.46 mA/cm2, FF=68%) of the amorphous silicon thin film solar cell was achieved.


2017 ◽  
Vol 19 (3) ◽  
pp. 795-802 ◽  
Author(s):  
Fang-I Lai ◽  
Jui-Fu Yang ◽  
Yu-Ling Wei ◽  
Shou-Yi Kuo

An evaporation-processed Cu2ZnSnSe4 thin film solar cell with a conversion efficiency of 7.18% was facilely fabricated in an environmentally benign selenium atmosphere.


2016 ◽  
Vol 4 (19) ◽  
pp. 7390-7397 ◽  
Author(s):  
Xin Zhao ◽  
Mingxuan Lu ◽  
Mark J. Koeper ◽  
Rakesh Agrawal

A monoamine–dithiol mixture is used to prepare homogeneous Cu(In, Ga)Se2 (CIGSe) molecular precursor solution, which yields a highly sulfur depleted CIGSe thin-film solar cell with a power conversion efficiency of 12.2%.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Jung-Sheng Huang ◽  
Kuan-Wei Lee ◽  
Yu-Hsiang Tseng

Bothβ-FeSi2and BaSi2are silicides and have large absorption coefficients; thus they are very promising Si-based new materials for solar cell applications. In this paper, the dcI-Vcharacteristics of n-Si/i-βFeSi2/p-Si and n-Si/i-BaSi2/p-Si thin film solar cells are investigated by solving the charge transport equations with optical generations. The diffusion current densities of free electron and hole are calculated first. Then the drift current density in the depletion regions is obtained. The total current density is the sum of diffusion and drift current densities. The conversion efficiencies are obtained from the calculatedI-Vcurves. The optimum conversion efficiency of n-Si/i-βFeSi2/p-Si thin film solar cell is 27.8% and that of n-Si/i-BaSi2/p-Si thin film solar cell is 30.4%, both are larger than that of Si n-i-p solar cell (ηis 20.6%). These results are consistent with their absorption spectrum. The calculated conversion efficiency of Si n-i-p solar cell is consistent with the reported researches. Therefore, these calculation results are valid in this work.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Chao-Chun Wang ◽  
Dong-Sing Wuu ◽  
Shui-Yang Lien ◽  
Yang-Shih Lin ◽  
Chueh-Yang Liu ◽  
...  

The nanocrystalline silicon-germanium (nc-SiGe) thin films were deposited by high-frequency (27.12 MHz) plasma-enhanced chemical vapor deposition (HF-PECVD). The films were used in a silicon-based thin film solar cell with graded-dead absorption layer. The characterization of the nc-SiGe films are analyzed by scanning electron microscopy, UV-visible spectroscopy, and Fourier transform infrared absorption spectroscopy. The band gap of SiGe alloy can be adjusted between 0.8 and 1.7 eV by varying the gas ratio. For thin film solar cell application, using double graded-dead i-SiGe layers mainly leads to an increase in short-circuit current and therefore cell conversion efficiency. An initial conversion efficiency of 5.06% and the stabilized efficiency of 4.63% for an nc-SiGe solar cell were achieved.


Sign in / Sign up

Export Citation Format

Share Document