scholarly journals RSM for Modelling the CO2 Effect in the Interfacial Tension Between Brine and Waxy Dulang Crude Oil During LSW-WAG EOR

Author(s):  
Musfika Rahman ◽  
Iskandar Dzulkarnain

Recent studies on low-salinity waterflooding (LSW) and CO2 water-alternating gas (WAG) use are noteworthy because of their effectiveness in recovered oil content retention in mature fields. s the brine salinity decreases, the solubility of CO2also increases. The CO2in the injected water is expected to reduce the water/oil interfacial tension (IFT), and thus previouslytrapped oil in the rock by capillary forces will flow. However, as of yet, a fewresearches havefocusedon the fluid/fluidinteraction involving waxy crude oil/brinein the LSW-WAGprocess. Twomodels, both of which have been developed from experimental interfacial tension measurements, assist in estimating the CO2's effect on oil/water interfacial tension in the presence and absence of CO2. This objective is accomplished by designing experiments using the modified central composite design (CCD)method in response surface methodology (RSM). Theeffectof pressure, brine salinity, and CO2on oil/water IFT are taken into consideration while modelling.Analysis of variance (ANOVA) was used to determine the optimal values of input variables based on the developed model to obtain an acceptable model. The R-squared values indicate that the developed models arecapable of accurately forecasting the experimental results of oil/water IFT using Dulang crude oil and seven different brine salinities. The findings of this study are expected to shed light on the fluid/fluid interaction behaviour during the LSW-WAG recovery process in a mature field producing waxy crude oil.

SPE Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Biswadeep Pal ◽  
Tarun Kumar Naiya

Summary Pour-point depressants (PPDs) were synthesized from natural sources and used in waxy crude oil transportation to reduce the pour point and improve flow. A biodegradable PPD (BPPD) was synthesized and tested to mitigate crude oil flow assurance problems in the present work. The transesterification process was used to synthesize coconut oil ethyl ester (COEE, termed as BPPD). Fourier transform electron spectroscopy (FTIR), proton nuclear magnetic resonance (H-NMR), and microscopic analysis were performed for better understanding of mechanisms for both BPPD and a commercially available PPD named PPD-A. The pour point of crude oil was reduced by 12 and 9°C after the addition of 800 ppm BPPD and PPD-A, respectively. The microscopic analysis confirms that the crystals of wax converted to very fine and dispersed particles during mixing of additives, which in turn increase flowability. BPPD performs better to reduce interfacial tension than PPD-A. The maximum reduction of 19% in interfacial tension was observed after the addition of 800 ppm BPPD. BPPD alters the wettability of the pipeline surface from intermediate wet to water-wet within 60 seconds, which results in reduced slip velocity and consequently lessens the deposition of wax. As a result, crude oils will not stick to the wall of the pipe surface and will experience less resistance to flow through pipelines. FTIR analysis indicated that long-chain alkane and aromatic groups are responsible for a higher pour point, and their concentration level was reduced after the addition of BPPD. The viscosity of crude oil was reduced by almost 94% after the addition of 800 ppm BPPD with crude oil, which in turn minimizes pumping costs for crude oil. As a result, the total project cost was reduced substantially. Biodegradability tests confirm that the BPPD is biodegradable and nontoxic. Due to its biodegradability and nontoxic nature, BPPD has a promising capacity to be used in the petroleum industry for easier pipeline transportation of waxy crude.


2017 ◽  
Vol 164 ◽  
pp. 313-332 ◽  
Author(s):  
Ali Piroozian ◽  
Mahmoud Hemmati ◽  
Issham Ismail ◽  
Muhammad A. Manan ◽  
Mohammad M. Rashidi ◽  
...  

Author(s):  
Xinyu Lin ◽  
Zhihua Wang ◽  
Qingshan Feng ◽  
Lei Zhang ◽  
Yunfei Xu

Abstract Although the problem of wax deposition in multiphase transportation pipelines have been addressed and some related wax deposition models have been developed in recent years, the complex wax deposition paths derived from the potential variety of flow regimes in multiphase flow have not been well understood. This study presented a method for characterizing wax crystals aggregation behavior and developed a model for describing wax deposition path in oil/water two-phase flows. The impact of the emulsified water droplets on wax crystals aggregation in shearing flows was quantified using polarized light microscopy and image analysis method. The role of the emulsified water droplets in the wax deposition path reaching the upper side and lower side of pipeline wall was discussed by solving the developed model which involves the possible inclination angle of multiphase transportation pipeline. The availability of the mechanistic model was validated by the data and knowledge in the existing literature. The results indicated that wax crystals morphologies and structures tended to be regular with the enhancement of shearing effect, and their aggregation behavior were restrained. The circular degree and particle size of wax crystals showed a characteristic that it firstly increased and then decreased with the accumulation of emulsified water droplets in shearing flow, and this transition appeared to the phase inversion point of the oil/water two-phase. The velocity for wax crystals depositing to pipeline wall decreased and the time for wax crystals depositing to pipeline wall extended with the existence of emulsified water droplets. The wax deposition path became more complex in multiphase transportation, and such effect became remarkable when the dispersity of oil/water two-phase enhanced. Accordingly, the intractable wax deposition of waxy crude oil in cold environment transportation would be mitigated to some extent. This study contributes to comprehending the distinction of wax deposition mechanism in single-phase and multiphase transportation of waxy crude oil, and the proposed method and model are valuable for further predicting wax deposition in waxy crude oil emulsions pipelines. The findings in this study also point out an approach to conducting cost-effective flow assurance operations in crude oil production and transportation.


2019 ◽  
Vol 818 ◽  
pp. 62-71
Author(s):  
Harvin Kaur ◽  
Azuraien Jaafar

In the industry, stubborn emulsion still constitutes up to 20% of the total emulsion volume. The existing remediation strategies for emulsion treatment rely heavily on the study of heavy crude oil emulsion. However, minimal information is available on integrating interfacial rheology with emulsion stability on waxy crude oil emulsion. The proposed research provides a study to the development of integration between interfacial rheology and emulsion stability so that it can be a quick assessment but an accurate method to measure emulsion stability. The primary objectives of the research are to provide an extensional study to the design development of a comprehensive interfacial rheology protocol for the assessment of emulsion stability by developing a method of testing and monitoring the interfacial rheology and to investigate the demulsification ability of the waxy crude oil emulsion subjected to microbial treatment. The novelty of this study is to use the newly developed measurement protocol via interfacial rheology to predict emulsion stability. Application of the microbes on waxy crude oil to breakdown the water-in-oil emulsion using a rheometer will also be explored. The treatment is targeted to disintegrate the interfacial layer within the emulsion leading to better oil recovery. Rheological properties of the emulsion will be monitored upon the microbial injection to analyze the effects of the treatment on the rheology of emulsion. The outcomes from this research is that the newly developed protocol will predict emulsion stability that could resolve the stubborn emulsion issues via the developed interfacial rheology protocol, which could be time-saving and increases the production efficiency. This research paper is a study to develop a correlation on surface tension and interfacial tension between crude oil, water and a readily-mixed emulsion.


2014 ◽  
Vol 931-932 ◽  
pp. 1243-1247 ◽  
Author(s):  
Issham Ismail ◽  
Shahir Misnan ◽  
Ahmad Shamsul Izwan Ismail ◽  
Rahmat Mohsin

Water produced along with the crude oil during production and transported together in a pipeline is a common occurrence in a petroleum production system. Understanding the behavior of crude oil-water flow in a pipe is crucial to engineering applications such as design and operation of flow lines and wells, and separation systems. Presently, there was no two phase flow study done on the Malaysian waxy crude oil-water. Therefore, a research work was conducted at the Malaysia Petroleum Resources Corporation Institute for Oil and Gas, Universiti Teknologi Malaysia to study the flow pattern of the Malaysian waxy crude oil-water flowing in a closed-loop system at the ambient condition through a 5.08 cm ID stainless steel horizontal pipeline. The research works comprised fluid characterization and flow pattern observation using a video camera camcorder. Five flow patterns have been identified, namely stratified wavy flow, stratified wavy with semi dispersed flow at interface and oil film, dispersion of water in oil and oil continuous with emulsion, dispersion of oil in water with water continuous, and the newly found semi dispersed flow with semi emulsion at interface and thin oil film. The experimental results could be used as a platform to understand better a more complex case of gas, oil, and water flow in a pipeline, which is of utmost importance in designing optimum surface facilities.


Author(s):  
Sivabalan Sakthivel ◽  
Sugirtha Velusamy ◽  
Ramesh L. Gardas ◽  
Jitendra S. Sangwai

2014 ◽  
Vol 931-932 ◽  
pp. 1248-1252 ◽  
Author(s):  
Issham Ismail ◽  
Shahir Misnan ◽  
Ahmad Shamsul Izwan Ismail ◽  
Rahmat Mohsin

Understanding the pressure drop and water holdup of crude oil-water flow in a pipe is crucial to many engineering applications. Free water in contact with the pipes wall can cause erosion or corrosion problems. An experimental research was conducted at the Malaysia Petroleum Resources Corporation Institute for Oil and Gas, Universiti Teknologi Malaysia to study the pressure drop and water holdup of the Malaysian waxy crude oil-water flowing in a closed-loop system at ambient condition through a 5.08 cm ID stainless steel horizontal pipeline. In the research work, water cuts were varied from 0 - 90% with mixture velocities ranging from 0.1 0.8 m/s. The research works comprised fluid characterization, pressure drop, and liquid holdup measurement.The investigations proved that pressure drop increased with flow rates, while the water holdup was found to have decreased slightly at higher water cuts due to the presence of emulsion in the crude oil a challenge when using a waxy crude oil in a two phase flow system. The experimental results can be used as a platform to understand better a more complex case of liquid-liquid two phase flow.


Author(s):  
Gabriel Tanaka Nunes ◽  
Fernando Kroetz ◽  
Tainan Gabardo ◽  
Nezia de Rosso ◽  
Cezar Otaviano Ribeiro Negrao

Sign in / Sign up

Export Citation Format

Share Document