scholarly journals Void and Moisture Content of Fiber Reinforced Composites

Author(s):  
Nurul Zuhairah Mahmud Zuhudi ◽  
Afiq Faizul Zulkifli ◽  
Muzafar Zulkifli ◽  
Ahmad Naim Ahmad Yahaya ◽  
Nurhayati Mohd Nur ◽  
...  

In this paper, a short review on the void and moisture content studies of fiber reinforced composites for both, synthetic and natural based fibers are presented. The review summarized the research papers in which include experimental and theoretical works that related to the void and moisture content studies. In addition to that, this review paper highlighting a few research studies conducted in literature on the effects of the void and moisture on the mechanical performances of the composite. Few common measurement methods used for the void and moisture determination are discussed here. The aims of this short review, mainly to capture the trend ranging from the recent five years back and summarize the various studies and also to compare and conclude the most common method for the determination of the void and moisture content. This paper is mainly providing a baseline in the selection of the methods for the future work of the author’s work with regard to the reduction of the presence of voids and moisture occur during the impregnation process of fiber reinforced composites, especially when using natural-based fiber.

1989 ◽  
Vol 170 ◽  
Author(s):  
King H. Lo ◽  
Robert W. Schmitz ◽  
William G. Gottenberg

AbstractThe influence of flexible interlayers/interphases on the performance of unidirectional fiber reinforced composites is studied. Micromechanical analysis based on the embedded composite cylinders model is used to study the stiffness as well as the internal stress distributions within the matrix phase of composites. Based on the results of the analysis, a criterion is proposed for the selection of optimal interlayer thickness for fiber composites. The proposed criterion gives results which seem to correlate well with the experimental data published in the literature.


2019 ◽  
Vol 9 (2) ◽  
pp. 68
Author(s):  
Ahmer Shah ◽  
Abdul Qadeer Dayo ◽  
Raja Asif Wagan ◽  
Ahthasham Sajid ◽  
Azizullah Shaikh ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 559
Author(s):  
Vincenzo Fiore ◽  
Dionisio Badagliacco ◽  
Carmelo Sanfilippo ◽  
Riccardo Miranda ◽  
Antonino Valenza

The goal of this paper is to evaluate the effectiveness of a cost-effective and eco-friendly treatment based on the use of sodium citrate (Na3C6H5O7) on the mechanical properties of flax fiber reinforced composites. To this scope, flax fibers were soaked in mildly alkaline solutions of the sodium salt at different weight concentration (i.e., 5%, 10% and 20%) for 120 h at 25 °C. The modifications on fibers surface induced by the proposed treatment were evaluated through Fourier transform infrared analysis (FTIR), whereas scanning electron microscope (SEM) and helium pycnometer were used to obtain useful information about composites morphology. The effect of the concentration of the treating solution on the mechanical response of composites was determined through quasi-static tensile and flexural tests, Charpy impact tests and dynamical mechanical thermal (DMTA) tests. The results revealed that composites reinforced with flax fibers treated in 10% solution exhibit the best mechanical performances as well as the lowest void contents. SEM analysis supported these findings showing that, by treating fibers in solutions with concentration up to 10%, composites having better morphology can be manufactured, in comparison to untreated ones. Conversely, higher Na3C6H5O7 concentrations negatively affect both the morphology and the mechanical properties of composites.


2008 ◽  
Vol 33-37 ◽  
pp. 553-558 ◽  
Author(s):  
Yan Li ◽  
Yan Ping Hu ◽  
Chun Jing Hu ◽  
Ye Hong Yu

Natural fibers are excellent substitute materials for man made fibers in making fiber reinforced composites due to their high specific strength and modulus, low density, low price, easy availability in some countries, recyclable and degradable properties. They have raised great attentions among material scientists and engineers in the past decade. Many researches have been conducted to study the mechanical properties, especially interfacial properties of natural fiber reinforced composites. However, the properties, such as mechanical performances, moisture absorption behaviors, et. al of natural fibers themselves have been seldom investigated. Knowing the relationship between microstructures and properties of natural fibers are important for understanding the bulk properties of natural fiber composites and also good instructions for designing bio-mimic materials. In this study, four kinds of natural fibers which were extracted from different plant sources were investigated. The microstructures of these natural fibers were revealed with the aid of optical microscopy. Microstructure models were thereof set up and mechanical properties for the representative volume element were assumed. Fiber bundle fracture models together with probability statistics analysis were employed to calculate the mechanical properties of natural fibers. The results were compared with the experimental measurements. Different mechanical behaviors of natural fibers which were functioned differently in the nature were clearly explained by the above studies


Sign in / Sign up

Export Citation Format

Share Document