Determination of Flexible Interlayer Thickness for Fiber Reinforced Composites

1989 ◽  
Vol 170 ◽  
Author(s):  
King H. Lo ◽  
Robert W. Schmitz ◽  
William G. Gottenberg

AbstractThe influence of flexible interlayers/interphases on the performance of unidirectional fiber reinforced composites is studied. Micromechanical analysis based on the embedded composite cylinders model is used to study the stiffness as well as the internal stress distributions within the matrix phase of composites. Based on the results of the analysis, a criterion is proposed for the selection of optimal interlayer thickness for fiber composites. The proposed criterion gives results which seem to correlate well with the experimental data published in the literature.

Author(s):  
Nurul Zuhairah Mahmud Zuhudi ◽  
Afiq Faizul Zulkifli ◽  
Muzafar Zulkifli ◽  
Ahmad Naim Ahmad Yahaya ◽  
Nurhayati Mohd Nur ◽  
...  

In this paper, a short review on the void and moisture content studies of fiber reinforced composites for both, synthetic and natural based fibers are presented. The review summarized the research papers in which include experimental and theoretical works that related to the void and moisture content studies. In addition to that, this review paper highlighting a few research studies conducted in literature on the effects of the void and moisture on the mechanical performances of the composite. Few common measurement methods used for the void and moisture determination are discussed here. The aims of this short review, mainly to capture the trend ranging from the recent five years back and summarize the various studies and also to compare and conclude the most common method for the determination of the void and moisture content. This paper is mainly providing a baseline in the selection of the methods for the future work of the author’s work with regard to the reduction of the presence of voids and moisture occur during the impregnation process of fiber reinforced composites, especially when using natural-based fiber.


2012 ◽  
Vol 510-511 ◽  
pp. 577-584 ◽  
Author(s):  
A. Quddos ◽  
Mohammad Bilal Khan ◽  
R.N. Khan ◽  
M.K.K. Ghauri

The impregnation of the fiber with a resin system, the polymeric matrix with the interface needs to be properly cured so that the dimensional stability of the matrix and the composite is ensured. A modified epoxy resin matrix was obtained with a reactive toughening agent and anhydride as a curing agent. The mechanical properties of the modified epoxy matrix and its fiber reinforced composites were investigated systematically. The polymeric matrix possessed many good properties, including high strength, high elongation at break, low viscosity, long pot life at room temperature, and good water resistance. The special attentions are given to the matrix due to its low out gassing, low water absorption and radiation resistance. In addition, the fiber-reinforced composites showed a high strength conversion ratio of the fiber and good fatigue resistance. The dynamic and static of the composite material were studied by thermo gravimetric analysis (TGA), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) with EDX. The influences of processing technique such as curing and proper mixing on the mechanical and interfacial properties were determined. The results demonstrated that the modified epoxy resin matrix is very suitable for applications in products fabricated with fiber-reinforced composites.


2013 ◽  
Vol 35 (3) ◽  
pp. 419-426 ◽  
Author(s):  
Jianqiang Chen ◽  
Meng Su ◽  
Judi Ye ◽  
Zhen Yang ◽  
Zhengchun Cai ◽  
...  

Author(s):  
Vijay Kumar Mahakur ◽  
Sumit Bhowmik ◽  
Promod Kumar Patowari

Nowadays, the utilization of natural fiber reinforced composite has increased frequently. These natural fibers have significant features like low cost, renewable, and, more importantly, biodegradable in nature, making them to be utilized for various industrial sectors. However, the massive demand for natural fiber reinforced composites (NFRC), forces them to be machined and operated, which is required for countless areas in multiple industries like automotive, marine, aerospace and constructions. But before obtaining the final shape of any specimen, this specimen should come across numerous machining processes to get the desired shape and structure. Therefore, the present review paper focused on the various aspects during conventional and unconventional machining of the NFRC. It covers the work by exploring the influence of all input variables on the outcome produced after machining the NFRC. Various methodologies and tools are also discussed in this article for reducing the machining defects. The machining of the NFRC is found as a challenging task due to insufficient interlocking between the matrix and fibers, and minimum knowledge in machining characteristics and appropriate input parameters. Thus, this review is trying to assist the readers to grasp a basic understanding and information during the machining of the NFRC in every aspect.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 842 ◽  
Author(s):  
Weiwei Zhang ◽  
Jin Gu ◽  
Dengyun Tu ◽  
Litao Guan ◽  
Chuanshuang Hu

Paper fibers have gained broad attention in natural fiber reinforced composites in recent years. The specific problem in preparing paper fiber reinforced composites is that paper fibers easily become flocculent after pulverization, which increases difficulties during melt-compounding with polymer matrix and results in non-uniform dispersion of paper fibers in the matrix. In this study, old newspaper (ONP) was treated with a low dosage of gaseous methyltrichlorosilane (MTCS) to solve the flocculation. The modified ONP fibers were characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Thermogravimetric Analysis (TG). Then the modified ONP fibers and high-density polyethylene (HDPE) were extruded and pelletized to prepare ONP/HDPE composites via injection molding. Maleic anhydride-grafted polyethylene (MAPE) was added to enhance the interfacial bonding performance with the ultimate purpose of improving the mechanical strength of the composites. The mechanical properties such as tensile, flexural, and impact strength and the water absorption properties of the composite were tested. The results showed that the formation of hydrogen bonding between ONP fibers was effectively prevented after MTCS treatment due to the reduction of exposed –OH groups at the fiber surface. Excessive dosage of MTCS led to severe fiber degradation and dramatically reduced the aspect ratio of ONP fibers. Composites prepared with ONP fibers modified with 4% (v/w) MTCS showed the best mechanical properties due to reduced polarity between the fibers and the matrix, and the relatively long aspect ratio of treated ONP fibers. The composite with or without MAPE showed satisfactory water resistance properties. MTCS was proven to be a cheap and efficient way to pretreat old newspaper for preparing paper fiber reinforced composites.


2019 ◽  
Vol 54 (8) ◽  
pp. 1031-1048 ◽  
Author(s):  
Yang Yang ◽  
Qi He ◽  
Hong-Liang Dai ◽  
Jian Pang ◽  
Liang Yang ◽  
...  

A micromechanical model for short fiber-reinforced composites (SFRCs) with functionally graded interphases and a systematic prediction scheme to determine the effective properties are presented. The matrix and the fibers are regarded to be linear elastic, isotropic, and homogeneous. Fibers are assumed to be ellipsoids coated perfectly by functionally graded interphases, which is supposed to be formed chemically or physically by the constituents near the interface. First, to analyze the grading interphase effect, layer-wise concept is followed to divide the functionally graded interphases into multi-homogeneous sub-layers. Next, to take the effect of functionally graded interphases into account, a combination of multi-inclusion method and Mori–Tanaka method is applied to predict effective elastic properties of this unidirectional SFRCs with respect to the content and aspect ratio of the inclusions. By employing coordinate transformation, spatially elastic moduli are obtained. Finally, Voigt homogenization scheme is used to obtain the overall, averaged, symmetrical elastic properties of the SFRCs. Numerical examples and analyses demonstrate the applicability of the proposed method and indicate the influences of graded interphase, orientation, and aspect ratio of inclusions as well as properties and contents of the constituents on the overall properties of SFRCs.


Author(s):  
Xiaochun Wang

There are many methods on computation of transverse elastic properties of unidirectional fiber-reinforced composites when using the finite element method, such as three-dimension model, two-dimension plane strain model, unit cell model, etc[1]. But unit cell models could be used only when the fibers are arrayed regularly. The computations of three- and two-dimension plane strain models are tremendous when many fine fibers are spread randomly in the matrix so that the properties of block of composite must be computed. The paper proposes a new embedded-zone method to compute the transverse elastic properties for a block of fiber-reinforced composites containing a great amount of fibers embedded in the matrix stochastically while using very little computational work compared with three- and two-dimension plane strain model. The transverse elastic modulus and shear modulus of unidirectional fiber-reinforced composites are computed.


2002 ◽  
Vol 69 (3) ◽  
pp. 292-302 ◽  
Author(s):  
Y. H. Zhao ◽  
G. J. Weng

In an effort to uncover the effect of interfacial partial debonding on the reduction of composite stiffness, a reduced moduli approach is proposed for the fictitious inclusions which are used to replace the original partially debonded inclusions. The fictitious inclusions are now perfectly bonded to the matrix and any micromechanical theory can be called upon to estimate the moduli of the composite. Using the volume of the inclusion directly beneath the interfacial cracks under the considered loading mode as a measure of damage, a set of anisotropic damage parameters is established in terms of the debonding angle, providing the reduced moduli for the fictitious inclusions. Specific considerations include debonding on the top and bottom of spheres and prolate inclusions, debonding on the lateral surface of spheres and oblate inclusions, and debonding on the top and bottom of circular fibers and elliptic cylinders. The reductions of the five transversely isotropic moduli for the partially debonded particle composites and the nine orthotropic moduli for the partially debonded fiber composites are examined as the debonding angle increases. The theory is also compared with some finite element results, and it suggests that the concept proposed to estimate the reduced moduli of the fictitious inclusions is a viable one.


Sisal fiber reinforced composites are being replaced with manmade composites as these materials are difficult to manufacture and non biodegradable. On the other hand, the natural fiber reinforced composites such as sisal fiber reinforced composites shows less strength compared to manmade composites. The objective of the present work is to explore the mechanical properties of sisal fiber composites and hybrid sisal composites using analytical and experimental methods. The sisal composites and hybrid sisal composites are prepared by using hand layup techniques. The hybrid composites are prepared by reinforcing nano carbon powder and sisal fibers in a polymer matrix with the weight fraction of 9% of carbon powder and 50% of sisal fiber. The elastic modulus of polymer matrix with carbon powder reinforcement and polymer matrix, carbon powder and sisal fiber reinforced composites are identified by conducting suitable experiments. Later by using the finite element method, the fracture behavior of sisal fiber composites and hybrid composites are estimated. The energy released (ER) and energy required to create the surface (ES) are estimated to identify the critical crack length of the respective material. The present work is used for the design of sisal fiber composites with respect to young’s modulus and fracture response.


Sign in / Sign up

Export Citation Format

Share Document