Thrust Bearing Design for High-Speed Composite Air Spindles

2002 ◽  
Vol 26 (10) ◽  
pp. 1997-2007
2002 ◽  
Vol 57 (1-4) ◽  
pp. 149-160 ◽  
Author(s):  
Kyung Geun Bang ◽  
Dai Gil Lee

Author(s):  
Alexandrina Untaroiu ◽  
Gen Fu

Abstract Gas foil thrust bearings have been utilized in high speed lightweight machines for many decades. These bearings are environment-friendly and capable of withstanding extreme conditions. However, there are also some challenges for foil thrust bearings at high speed conditions, such as insufficient heat dissipation and thermal management. The heat generated by viscous shearing continues to raise the temperature inside the gas film and may cause failures. Among all the methods to enhance heat dissipation, a promising passive thermal management method is modifying the top foil’s trailing edge shape. This modification will enhance the air mixing in between the bearing pads. The aim of this study is to identify the optimal design of the top foil trailing edge shape and provide a guideline for future bearing design. A 3-D computational fluid dynamics (CFD) model for a thrust foil bearing was created using ANSYS-CFX software. The trailing edge of the top foil was modified to a chevron shape. A sensitivity study was conducted to investigate the connection between the top foil trailing edge shape and the thermal conditions in the gas film. The maximum temperature inside the air gas film is selected as the output. The design of experiments (DOE) technique was used to generate the sampling points. A surrogate model was generated based on the output data by using the neural network method. The surrogate model was used together with a genetic multi-objective algorithm to minimize the maximal temperature inside the gas film and maximize the load carrying capacity. The optimal design was then compared with the baseline model. Results suggest the optimized trailing edge shape is capable of reducing the temperature inside the gas film. This optimal design approach can be used for improvements of chevron foil thrust bearing design.


Author(s):  
Yu Guo ◽  
Yu Hou ◽  
Qi Zhao ◽  
Xionghao Ren ◽  
Shuangtao Chen ◽  
...  

Foil bearing is considered to be a promising supporting technology in high-speed centrifugal machinery. Due to the high-speed shearing effect in the viscous lubricant film, heat generation could not be ignored. In this paper, a thermo-elastic model of the multi-leaf foil thrust bearing is proposed to predict its thermal and static characteristics. In the model, modified Reynolds equation, energy equation, and Kirchhoff equation are solved in a coupling way. The contact area between the foil and welding plate is taken into account. Besides, the effect of cooling air on the bearing temperature is investigated. The ultimate load capacity and transient overload failure process of the bearing is analyzed and discussed. The effect of rotation speed on the bearing temperature is more obvious than that of the bearing load. The bearing temperature drops obviously by introducing the cooling air, and the cooling effect is improved with the supply pressure. The transient overload failure of the bearing occurs when the bearing load exceeds the ultimate value.


Author(s):  
K. L. d’Entremont ◽  
K. M. Ragsdell

Abstract An enhanced nonlinear programming code has been developed and applied to a turbogenerator hydrostatic thrust bearing design problem. The original code was OPT. It is augmented by a pre- and post-processor which addresses the performance variance minimization problems posed by Japan’s Genichi Taguchi. The new code TOPT is formed by adapting Taguchi’s external design influence and quality loss concepts to OPT. TOPT’s results are compared to an optimization using traditional Taguchi methods which are introduced to the reader. These two approaches yield comparable results.


ASAIO Journal ◽  
1996 ◽  
Vol 42 (2) ◽  
pp. 51
Author(s):  
P E Allaire ◽  
R D Rockwell ◽  
G B Bearnson

2000 ◽  
Vol 123 (3) ◽  
pp. 501-508 ◽  
Author(s):  
S. Yoshimoto ◽  
K. Kohno

Recently, graphite porous material has been used successfully in an aerostatic bearing. In actual bearing design, it is often necessary to reduce the thickness of porous material to make the bearing smaller. However, a reduction in thickness results in a reduction in the strength of the porous material. In particular, when the diameter of porous material is large, it is difficult to supply the air through the full pad area of porous material because it deforms. Therefore, in this paper, two types of air supply method (the annular groove supply and the hole supply) in a circular aerostatic porous thrust bearing are proposed to avoid the deflection of the bearing surface. The static and dynamic characteristics of aerostatic porous bearing with these air supply methods are investigated theoretically and experimentally. In addition, the effects of a surface restricted layer on the characteristics are clarified.


2017 ◽  
Vol 69 (2) ◽  
pp. 105-115 ◽  
Author(s):  
Abdelrasoul M. Gad

Purpose Compliant foil thrust bearings are promising bearings for high-speed oil-free turbomachinery. However, most previous experimental and numerical approaches to investigate the performance of these bearings have ignored the effect of bearing runner misalignment. Therefore, this paper aims to evaluate the effects of static and dynamic angular misalignments of the bearing runner on the performance of a gas-lubricated foil thrust bearing. Design/methodology/approach The bearing runner is allowed a maximum angular misalignment that produces a minimum gas film thickness as low as 20 per cent of the nominal clearance. Then, the variations of bearing load carrying capacity, viscous power loss and stiffness and damping coefficients of the gas film with runner misalignment are thoroughly analyzed. The flow in the gas film is modeled with compressible Reynolds equation along with the Couette approximation technique, and the deformation of the compliant bearing is calculated with a robust analytical model. Small perturbations method is used to calculate the force and moment dynamic coefficients of the gas film. Findings The results show that misaligned foil thrust bearings are capable of developing a restoring moment sufficient enough to withstand the imposed misalignments. Furthermore, the enhanced hydrodynamic effect ensures a stable operation of the misaligned bearing, and the results highlighted the role of the compliant bearing structure to maintain foil bearing prominent features even at misaligned conditions. Originality/value The value of this study is the evaluation of the effects of runner angular misalignments on the static and dynamic characteristics of Generation II bump-type foil thrust bearing.


Sign in / Sign up

Export Citation Format

Share Document