scholarly journals Topological Models for Prediction of Pharmacokinetic Parameters of Cephalosporins using Random Forest, Decision Tree and Moving Average Analysis

2008 ◽  
Vol 76 (3) ◽  
pp. 377-394 ◽  
Author(s):  
Harish Dureja
Author(s):  
A.K. Madan ◽  
Rohit Dutt

In the present study, the application of a wide variety of topological descriptors was investigated for predicting hydrophobicity (clogP) of isatin analogues. A total of four topochemical indices selected through decision tree (DT) were used for the development of single index based models using moving average analysis (MAA). The overall accuracy of prediction varied from a minimum of 95% to a maximum of 98% with regard to hydrophobicity.The values of sensitivity, specificity and Mathew's correlation coefficient for all MAA based models with regard to hydrophobicity (clogP) was found to be =78%, =94% and =0.85 respectively, suggesting robustness of proposed models. Since the compounds with high clogP values were found effective in carboxylesterases (CEs) inhibition, therefore, highly hydrophobic ranges of proposed MAA models can easily be exploited for the design and development of potent CEs inhibitors.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 268-269
Author(s):  
Jaime Speiser ◽  
Kathryn Callahan ◽  
Jason Fanning ◽  
Thomas Gill ◽  
Anne Newman ◽  
...  

Abstract Advances in computational algorithms and the availability of large datasets with clinically relevant characteristics provide an opportunity to develop machine learning prediction models to aid in diagnosis, prognosis, and treatment of older adults. Some studies have employed machine learning methods for prediction modeling, but skepticism of these methods remains due to lack of reproducibility and difficulty understanding the complex algorithms behind models. We aim to provide an overview of two common machine learning methods: decision tree and random forest. We focus on these methods because they provide a high degree of interpretability. We discuss the underlying algorithms of decision tree and random forest methods and present a tutorial for developing prediction models for serious fall injury using data from the Lifestyle Interventions and Independence for Elders (LIFE) study. Decision tree is a machine learning method that produces a model resembling a flow chart. Random forest consists of a collection of many decision trees whose results are aggregated. In the tutorial example, we discuss evaluation metrics and interpretation for these models. Illustrated in data from the LIFE study, prediction models for serious fall injury were moderate at best (area under the receiver operating curve of 0.54 for decision tree and 0.66 for random forest). Machine learning methods may offer improved performance compared to traditional models for modeling outcomes in aging, but their use should be justified and output should be carefully described. Models should be assessed by clinical experts to ensure compatibility with clinical practice.


2021 ◽  
Vol 11 (4) ◽  
pp. 1378
Author(s):  
Seung Hyun Lee ◽  
Jaeho Son

It has been pointed out that the act of carrying a heavy object that exceeds a certain weight by a worker at a construction site is a major factor that puts physical burden on the worker’s musculoskeletal system. However, due to the nature of the construction site, where there are a large number of workers simultaneously working in an irregular space, it is difficult to figure out the weight of the object carried by the worker in real time or keep track of the worker who carries the excess weight. This paper proposes a prototype system to track the weight of heavy objects carried by construction workers by developing smart safety shoes with FSR (Force Sensitive Resistor) sensors. The system consists of smart safety shoes with sensors attached, a mobile device for collecting initial sensing data, and a web-based server computer for storing, preprocessing and analyzing such data. The effectiveness and accuracy of the weight tracking system was verified through the experiments where a weight was lifted by each experimenter from +0 kg to +20 kg in 5 kg increments. The results of the experiment were analyzed by a newly developed machine learning based model, which adopts effective classification algorithms such as decision tree, random forest, gradient boosting algorithm (GBM), and light GBM. The average accuracy classifying the weight by each classification algorithm showed similar, but high accuracy in the following order: random forest (90.9%), light GBM (90.5%), decision tree (90.3%), and GBM (89%). Overall, the proposed weight tracking system has a significant 90.2% average accuracy in classifying how much weight each experimenter carries.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Moaz Hiba ◽  
Ahmed Farid Ibrahim ◽  
Salaheldin Elkatatny ◽  
Abdulwahab Ali

Sign in / Sign up

Export Citation Format

Share Document