scholarly journals In vitro Studies on Sustained Release Suppository Formulations of Tiaprofenic Acid with Sucrose Fattv Acid Ester

2003 ◽  
Vol 71 (4) ◽  
pp. 357-364
Author(s):  
Sevgi Gūngör ◽  
Mine Orlu ◽  
Yildiz Özsoy ◽  
Ahmet Araman

The objective of this study was to evaluate the performance of Sucro Ester 7 (sucrose distearate) as additive for preparing sustained release suppositories of tiaprofenic acid. Suppocire AIM (semi-synthetic glycerides) was used as suppository base and formulations were prepared containing different ratios of sugar ester: Suppocire AIM. Content uniformity, disintegration time and in vitro release characteristics of suppositories were investigated. Significant decrease in the extent of drug release was observed with the increase in the content of sugar ester, which was due to the longer disintegration time of suppositories.

Author(s):  
Pearl Pires Dighe ◽  
Tank Hm

 Objective: The current study involves the fabrication of oral bilayer matrix designs of a combination of two drugs, metoprolol succinate and atorvastatin calcium, the optimization of their in vitro release and characterization using the design expert software. Metoprolol succinate, a β1- selective adrenergic receptor blocking agent, is used in the management of hypertension has a half-life of approximately 4–5 h; thus, there is the need to use extended-release formulation for prolonged action. Atorvastatin is a hydroxymethylglutaryl-coenzyme A reductase inhibitor, an antilipidemic, used to lower blood cholesterol. The rationale for this fixed-dose combination is to coadminister two drugs acting by different mechanisms of action together, reduce dosing frequency, and increase patient compliance.Methods: A 32 factorial design was selected to analyze the effect of critical factors, polymer concentration of Kollidon sustained release (SR), and Eudragit RS and their interaction on the in vitro release of the SR part containing metoprolol succinate. The drug release at 2 h (Q2), 8 h (Q8), and 20 h (Q20) was taken as responses. The blends of both layers were prepared, evaluated for precompression characteristics, and compressed by direct compression. The compressed bilayer tablets were evaluated for their hardness, weight variation, friability, content uniformity, diameter, and in vitro release.Result and Conclusion: The release profile indicates Higuchi’s kinetics. Contour and surface response plots show significant interaction among the formulation variables. Formulation MS06 containing 70 mg Kollidon SR and 10 mg Eurdragit RS was found to be the optimized formulation, controlling the drug release for a 24 h period.


Author(s):  
Deborah Ejiogu Chioma ◽  
Felix Sunday Yusuf

Metoclopramide hydrochloride is a dopamine receptor antagonist, used mostly for stomach and esophageal problems as it is a prokinetic agent. The aim of the present study was to design and evaluate the suppositories of Metoclopramide HCl.  Six different, rectal suppositories were developed by fusion (pour-moulding) method by employing various hydrophilic and hydrophobic polymeric bases like gelatin, PEG-400 and hydrogenated vegetable oil using propylene glycol as plasticizer and beeswax as hardening agent.  Metoclopramide HCl suppositories were evaluated for appearance, weight variation, drug content uniformity, liquefaction time and temperature, micro-melting range, disintegration and in-vitro release study.  The in-vitro release rate data was evaluated statistically and was found that from all the formulations the drug release is by diffusion mechanism. Optimum formulation of batch S1 has shown 83.427% Metoclopramide HCl in a study of 2 hrs. These drug release results are supported by the disintegration time of suppositories. Lesser the disintegration time faster the drug release. All formulations has shown zero, first and Higuchi release kinetics. The result suggests that the Metoclopramide HCl suppositories can be prepared by employing hydrophilic and hydrophobic polymers.


2020 ◽  
pp. 1-9
Author(s):  
Yunhong Wang ◽  
Rong Hu ◽  
Yanlei Guo ◽  
Weihan Qin ◽  
Xiaomei Zhang ◽  
...  

OBJECTIVE: In this study we explore the method to prepare tanshinone self-microemulsifying sustained-release microcapsules using tanshinone self-microemulsion as the core material, and chitosan and alginate as capsule materials. METHODS: The optimal preparation technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules was determined by using the orthogonal design experiment and single-factor analysis. The drug loading and entrapment rate were used as evaluation indexes to assess the quality of the drug, and the in vitro release rate was used to evaluate the drug release performance. RESULTS: The best technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules is as follows: the concentration of alginate is 1.5%, the ratio of tanshinone self-microemulsion volume to alginate volume to chitosan mass is 1:1:0.5 (ml: ml: g), and the best concentration of calcium chloride is 2.0%. To prepare the microcapsules using this technology, the drug loading will be 0.046%, the entrapment rate will be 80.23%, and the 24-hour in vitro cumulative release rate will be 97.4%. CONCLUSION: The release of the microcapsules conforms to the Higuchi equation and the first-order drug release model and has a good sustained-release performance.


1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


2014 ◽  
Vol 50 (4) ◽  
pp. 799-818 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Harris Shoaib ◽  
Rabia Ismail Yousuf ◽  
Sabahat Jabeen ◽  
Iyad Naeem Muhammad ◽  
...  

The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.


2014 ◽  
Vol 651-653 ◽  
pp. 313-316
Author(s):  
Ping Liu ◽  
Jin Liang Zhang

Objective: to prepare sustained-release capsules, changchun amine build release degree determination method, study its drug release characteristics and compared with the reference preparation. Methods: using ordinary dissolution apparatus and fiber stripping analyzer to determine the in vitro release of sustained-release capsules. The content determination method, drug to pH 1.5 sodium chloride for the release of the medium of hydrochloric acid solution, using ultraviolet spectrophotometry to release a quantity, at the same time by optical real-time test evaluation of homemade consistency and reference formulation of drug release. Results: the analysis method can be effectively used to build the release of sustained-release capsules to measure, two kinds of similarity factor is more than 50, drug release characteristics match each batch sample, quality and stability. Conclusion: the self-made samples and reference preparation have similar in vitro release characteristics of homemade capsule good slow release effect, drug release and stability.


Author(s):  
Ankit Acharya ◽  
Mohammed Gulzar Ahmed ◽  
Ravi Chaudhari ◽  
Renukaradhya Chitti

Divalproex sodium is considered as the most important antiepileptic drug and widely used for treatment of epilepsy and bi-polar disorders and prophylaxis of migraine. The present work has been done to formulate bi-layered tablet of Divalproex sodium containing immediate release layer and sustained release layer. The FTIR study revealed that there was no interaction between drug and polymer and combination. Both layers were prepared by wet granulation technique as poor flow property exhibited by pure drug. The immediate release layer was formulated by using superdisintegrants and evaluated for physical parameters, disintegration time and in vitro drug release. The optimized immediate release layer (IF6) with highest in vitro release of 98.11 was selected for bi-layered tablet formulation. HPMC K4M and HPMC K100M polymer were used to retard the drug release from sustained release layer in different proportion and combination and evaluated for physical parameter along with in vitro drug release studies. The optimized sustained release layer (SF8) which extends the Divalproex sodium release more than 18 hrs was selected. Finally, bi-layered tablets were prepared by double compression of selected sustained release layer and immediate release layer of Divalproex sodium. The tablets were evaluated for hardness, thickness, weight variation, friability, drug content uniformity and in vitro drug release. All the physical parameters were in acceptable limit of pharmacopeial specification. The stability studies, shown the bi-layer tablet was stable at 40oC / 75% RH for a period of 3 months.  


Author(s):  
Nkemakolam Nwachukwu ◽  
Sabinus Ifeanyi Ofoefule

Aim: This study aimed to evaluate the mechanical and in vitro release properties of diazepam from tablets containing fluid bed dried and lyophilized microcrystalline cellulose (MCC) obtained from the matured fruit husks of Cocos nucifera (CN). Study Design: Method of experiment. Place and Duration of Study: Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka from March 2015 to September, 2016 Methods:  Dried CN fruit husks were digested in sodium hydroxide to obtain alpha (α) cellulose which on hydrolysis with mineral acid (Hydrochloric acid) solution gave CN-MCC. The dry MCC obtained by either fluid bed or lyophilized drying of the wet CN-MCC were coded MCCF-Cocos and MCCL-Cocos respectively. Both MCCs were used in the formulation of diazepam tablets at 20, 30 and 40% w/w. Avicel PH 102 (AVC-102), was used as comparing standard. The tablets were evaluated for physical and dissolution properties using standard methods. Results: Results show the tablets passed the British Pharmacopoeia specifications for weight uniformity, crushing strength, disintegration time, friability and dissolution. Diazepam tablets containing MCCL-Cocos (coded DCL) were mechanically stronger than those containing MCCF-Cocos (coded DCF). Disintegration time was in the order of DCF > DCL tablets while friability was in the order of DCL < DCF tablets. Diazepam tablets containing AVC-102 (coded DAV) were mechanically stronger than DCL and DCF tablets. The dilution potential was in the order DAV > DCL > DCF. More than 80% of the diazepam content was released from DAV, DCL and DCF tablets. Conclusion: Generally, DAV, DCL and DCF tablets met the British Pharmacopoeia limits for mechanical properties and in vitro drug release with DCL tablets showing significantly (P = .05) superior mechanical properties while DCF showed faster drug release.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
A Jadhav

The present investigation is concerned with formulation and evaluation of buccoadhesive tablets containing antihypertensive drug, Losartan Potassium to avoid the first pass effect and to improve its bioavailability with reduction in dosing frequency and dose related side effects. The tablets were prepared by wet granulation method. Nine formulations were developed with varying concentrations of polymers like hydroxypropylmethyl cellulose K100 and Guar gum. The tablets were tested for hardness, friability, weight variation, content uniformity, surface pH, swelling index, ex vivo mucoadhesive strength, in vitro drug dissolution study and ex-vivo permeation study. FTIR and DSC studies showed no evidence on interactions between drug and excipients. The in vitro release of Losartan Potassium was performed under sink conditions. The mucoadhesive strength of formulation F9 was found to be 0.14307 N. The swelling index of formulation F9 was found to be 87%. The formulation F9, containing 25 mg of losartan potassium exhibited 6 h sustained drug release of 96% with desired therapeutic concentration. The in vitro release kinetics studies revealed that all formulations fits well with zero order kinetics followed by Korsemeyer-Peppas model and the mechanism of drug release is Non-Fickian diffusion. Based on the results of ex vivo mucoadhesive strength and swelling index studies formulation F9 was selected as optimized formulation and subjected for stability study. Short-term stability studies on the promising formulation indicated that there are no significant changes in drug content and in vitro dissolution characteristics.  


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (01) ◽  
pp. 34-40
Author(s):  
V.L Narasaiah ◽  
◽  
Ch. Praneetha ◽  
P Mallika ◽  
K. Pullamma ◽  
...  

The aim of this project was to develop fast dissolving tablets (FDT) of aceclofenac by wet granulation using super disintegrating agents such as cross carmellose sodium (CCS), Crospovidone (CP) and sodium starch glycolate (SSG) were formulated and evaluated. The tablets evaluated for thickness, hardness, friability weight variation, drug content, water absorption ratio, wetting time, disintegration time and in vitro dissolution studies. The in vitro release studies were conducted in pH 7.4 phosphate buffer. Different release models like zero order, first order, Higuchi and Korsmeyer-Peppas were applied to in vitro drug release data in order to evaluate drug release mechanisms and kinetics. The formulation ‘F4’ showed satisfactory physico-chemical properties and drug content uniformity. The formulation ‘F4’ follows first order kinetics and the mechanism of drug release was governed by Higuchi. The ‘n’ value showed between <0.5, it was followed that Fickian transport. The FTIR studies were conducted and it shows that there is no interaction between drug and excipients.


Sign in / Sign up

Export Citation Format

Share Document