scholarly journals Contemporary approaches to research supporting the development of microturbine power generation systems

Author(s):  
A. S. Kosoy ◽  
S. V. Monin ◽  
M. V. Sinkevich

The paper provides an analysis of how much it is possible to improve the efficiency of low-power gas-turbine engines. We show that refining those features of the main blading section units that affect the gas dynamics significantly enhances engine performance. We present a new concept of developing highly efficient turbomachinery, pumps and propellers using modern additive manufacturing technology. We describe a unique research and testing facility for studies, per-node refinement and testing concerning gas-turbine engine components, which should ensure low cost and high efficiency of gas-turbine engine design.

Author(s):  
Philip H. Snyder ◽  
Raymond E. Fish

A wave rotor topped gas turbine engine has been identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle have been used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine are addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an improvement in shaft horsepower and SFC. Predicted off design part power engine performance for the wave rotor topped engine is presented including that at engine idle conditions. Operation of the engine at off design is closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges remaining in the development of a demonstrator engine are addressed.


Author(s):  
Ralph A. Dalla Betta ◽  
James C. Schlatter ◽  
Sorento G. Nickolas ◽  
Mohan K. Razdan ◽  
Duane A. Smith

An operating cycle had been developed for a catalytic combustion system applied to the Allison 501-KB7 engine. This cycle used overboard bleed of diffuser air to maintain a high fuel/air ratio at the catalyst and thus achieve a high combustor outlet temperature with attendant low CO and UHC emissions. For the design point of this engine, the emissions measured at full pressure and temperature in a subscale catalyst test rig were <1 ppm NOx and <2 ppm CO and UHC. Tests over the full operating cycle showed that the catalytic combustor system would achieve low emissions from 20 to 100% load. The use of catalytic combustion on a high efficiency gas turbine engine design was also evaluated. Pressures up to 20 atm and combustor outlet temperatures up to 1500°C (2730°F) were demonstrated with NOx emissions <2.2 ppm and CO and UHC <2 ppm. These results show that catalytic combustion is a viable technology for application to a high pressure, high temperature industrial gas turbine engine design.


1992 ◽  
Author(s):  
KIRK D ◽  
ANDREW VAVRECK ◽  
ERIC LITTLE ◽  
LESLIE JOHNSON ◽  
BRETT SAYLOR

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

AbstractTemperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

Abstract Temperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


Author(s):  
Peter D. Smout ◽  
Steven C. Cook

The determination of gas turbine engine performance relies heavily on intrusive rakes of pilot tubes and thermocouples for gas path pressure and temperature measurement. For over forty years, Kiel-shrouds mounted on the rake body leading edge have been used as the industry standard to de-sensitise the instrument to variations in flow incidence and velocity. This results in a complex rake design which is expensive to manufacture, susceptible to mechanical damage, and difficult to repair. This paper describes an exercise aimed at radically reducing rake manufacture and repair costs. A novel ’common cavity rake’ (CCR) design is presented where the pressure and/or temperature sensors are housed in a single slot let into the rake leading edge. Aerodynamic calibration data is included to show that the performance of the CCR design under uniform flow conditions and in an imposed total pressure gradient is equivalent to that of a conventional Kiel-shrouded rake.


Sign in / Sign up

Export Citation Format

Share Document