scholarly journals Tunnel Ventilation System during Construction to Control the Density of Dust

1993 ◽  
Vol 7 (4) ◽  
pp. 308-309
Author(s):  
Jun YOSHIDA
Author(s):  
Mark P. Colino ◽  
Elena B. Rosenstein

The new train signaling, traction power and tunnel ventilation system coordination guidelines enacted in National Fire Protection Association (NFPA) Standard 130 have brought the necessity and cost of tunnel ventilation fan shafts into greater focus. The guidelines were aimed at coordinating the three aforementioned rail systems to control the number of trains that could be between successive ventilation shafts during an emergency — in recognition of the fact that the best protection to both incident and non-incident train passengers and crew is to allow no more than one train in each ventilation zone. Though based in safety, these new NFPA guidelines can substantially expand the capital cost and environmental impact of new rail tunnel projects by adding more ventilation shafts and tunnel fan equipment to the scope of work. In addition, the resulting increase in the required number of ventilation shafts and tunnel fan equipment can hinder existing railroad properties as they seek to either increase their train throughput rates, or reduce their tunnel electrical infrastructure. Fortunately, a new kind of emergency ventilation shaft has been developed to facilitate compliance with the NFPA 130 Standard without the excessive capital cost and far-reaching environmental impacts of a traditional emergency ventilation shaft. This new kind of emergency ventilation shaft is called the Crossflue. The Crossflue is a horizontal passage between parallel rail tunnels with a single ventilation fan-motor unit installation. The Crossflue fan is designed to transfer air/smoke flows from one (occupied, incident) tunnel to another (unoccupied, non-incident) tunnel — thereby protecting the incident tunnel at the expense of the non-incident tunnel. The Crossflue passage has angled construction to allow a smooth transition of airflows both into and out of the adjoining tunnels. In addition to the fan, the Crossflue contains a ventilation damper, sound attenuators, ductwork transitions and flexible connectors within the fan equipment line-up; the functionality of all this mechanical equipment is described in the paper. To preserve underground space and minimize the rock excavation, the Crossflue fan is both remotely-powered and remotely-controlled; the fan is only operated as part of a pre-programmed response to tunnel fire events. The methodology utilized to design the Crossflue was taken from the Subway Environmental Design Handbook (SEDH); the SEDH [1] was specifically developed for rail tunnel ventilation design and is the preeminent reference volume in the industry. In summary, the Crossflue provides a dual benefit of achieving NFPA 130 compliance, while at the same time minimizing the construction, equipment, environmental, and energy costs of a traditional tunnel ventilation shaft.


Author(s):  
Behtash Hakimzadeh ◽  
Mohammad Reza Talaee

The creation of a safe path for evacuating passengers from a tunnel during fire accidents is an important function of a mechanical ventilation system in tunnels. In this work, the operation of emergency ventilation in the fire mode in a long railway tunnel with push–pull ventilation shafts is analyzed using a fire dynamics simulator. As the passenger trains are lengthy – and so is a tunnel – when trains pass through a tunnel, the position of fire on the train becomes an important parameter for rescuing the passengers through a safe path. The novelty of this study is in the design of emergency ventilation scenarios that consider the position of fire on the train in addition to the tunnel ventilation shafts. For this case study, a lengthy (8 km) urban railway tunnel in Tehran with four rail tracks and eight ventilation shafts is considered for designing emergency ventilation scenarios and control of fire products. The fire source is a passenger train wagon with a 25-MW heat release rate. It is shown that, during the rescue operation of the passengers, the location of fire on the train may lead to reverse the ventilation scenario compared with the traditional ones that use only the tunnel shafts. Also, it is observed that there is a region with 50 m radius around each ventilation shaft, i.e. the absolute exhaust zone, where the ventilation system must be set at the exhaust mode due to the presence of fire, to minimize the spreading of fire products downstream. All the logical scenarios of the tunnel ventilation system are designed and demonstrated to create a critical ventilation velocity in the tunnel, which would help in developing a more precise control panel of the tunnel in the fire mode.


2006 ◽  
Vol 2006.2 (0) ◽  
pp. 355-356
Author(s):  
Tadashi KOZU ◽  
Hayato SHIMIZU ◽  
Kenji TANAKA ◽  
Kunihiro ASANUMA

2008 ◽  
Vol 2008.7 (0) ◽  
pp. 171-172
Author(s):  
Hironari OGATA ◽  
Kazuhiro TANIGUCHI ◽  
Atsufumi ICHIHASHI ◽  
Yutaka HORII ◽  
Masaru MURAYAMA

Sign in / Sign up

Export Citation Format

Share Document