scholarly journals Harvested wood products and carbon sink in a young beech high forest

2008 ◽  
Vol 5 (1) ◽  
pp. 57-67 ◽  
Author(s):  
R Pilli ◽  
E Dalla Valle ◽  
T Anfodillo ◽  
D Penzo ◽  
F Fontanella
Author(s):  
Luyang Zhang ◽  
Yankun Sun ◽  
Tianyuan Song ◽  
Jiaqi Xu

The use of harvested wood products (HWPs) influences the carbon flux. China is both the major producer and trader of HWP, so estimating the carbon stock change of China’s HWP is important to help curb climate change. Accurate reporting and accounting of carbon flows in the HWP pool is needed to meet greenhouse gas monitoring and climate change mitigation objectives under the United Nations Framework Convention on Climate Change (UNFCCC) and the Paris Agreement. This study applied production approach (PA) to estimate the carbon stock change of China’s HWP from 1900 to 2016. During the estimating period, the carbon stock of HWP in use and deposed at solid waste disposal sites (SWDS) were 649.2 Teragrams Carbon (TgC) (346.8 TgC in wood-based panels, 216.7 TgC in sawnwood and 85.7 TgC in paper & paperboard) and 72.6 TgC, respectively. The carbon amount of annual domestic harvest HWP varied between 87.6 and 118.7 TgC. However, the imported carbon inflow increased significantly after the 1990s and reached 47.6 TgC in 2016, accounting for 46% of the domestic harvest of that year. China has great mitigation potential from HWP and use of this resource should be considered in future strategies to address climate change.


2020 ◽  
Vol 66 (2) ◽  
pp. 76-86
Author(s):  
Akiko Suyari ◽  
Yushin Shinoda ◽  
Chihiro Kayo

2012 ◽  
Vol 9 (3) ◽  
pp. 3949-4023 ◽  
Author(s):  
G. P. Peters ◽  
S. J. Davis ◽  
R. M. Andrew

Abstract. In a globalised world, the transfer of carbon between regions, either physically or embodied in production, represents a substantial fraction of global carbon emissions. The resulting emission transfers are important for balancing regional carbon budgets and for understanding the drivers of regional emissions. In this paper we synthesise current understanding in two parts: (1) embodied CO2 emissions from the production of goods and services produced in one country but consumed in others, (2) physical carbon flows in fossil fuels, petroleum-derived products, harvested wood products, crops, and livestock. We describe the key differences between studies and provide a consistent set of estimates using the same definitions, modelling framework, and consistent data. We find the largest trade flows of carbon in international trade in 2004 were fossil fuels (2673 MtC, 37% of global emissions), CO2 embodied in traded goods and services (1661 MtC, 22% of global emissions), livestock (651 MtC, 20% of total livestock carbon), crops (522 MtC, 31% of total harvested crop carbon), petroleum-based products (183 MtC, 50% of their total production), and harvested wood products (149 MtC, 40% of total roundwood extraction). We find that for embodied CO2 emissions estimates from independent studies are robust. We found that differences between individual studies is not representative of the uncertainty in consumption-based estimates as different studies use different production-based emission estimates as input and different definitions of allocating emissions to international trade. After adjusting for these issues, results across independent studies converge to give less uncertainty than previously assumed. For physical carbon flows there are relatively few studies to be synthesised, but differences between existing studies are due to the method of allocating to international trade with some studies using "apparent consumption" as opposed to "final consumption" in more comprehensive approaches. While results across studies are robust to be used in further applications, more research is needed to understand the differences between methods and to harmonise definitions for particular applications.


2020 ◽  
Vol 12 (6) ◽  
pp. 2510
Author(s):  
Hubert Paluš ◽  
Ján Parobek ◽  
Martin Moravčík ◽  
Miroslav Kovalčík ◽  
Michal Dzian ◽  
...  

The forestry and forest-based sector play a significant role in climate change mitigation strategies and can contribute to the achievement of a climate-neutral economy. In this context, the ability of harvested wood products (HWP) to sequester carbon is of significant importance. The objective of this work is to make a projection of climate change mitigation potential of HWP, under different scenarios of wood utilization in Slovakia. This study builds on the comparison of different scenarios of industrial wood utilization till 2035 and presents the resulting impacts on the national carbon balance. The results suggest that the development of timber supplies after 2020 in Slovakia will be influenced, in particular, by the future changes in the age distribution and tree species composition as well as the extent of future accidental felling. Consequently, a predicted structure and availability of wood resources in Slovakia will be reflected in a higher share of the production of products with shorter life cycle and thus will negatively affect the carbon pool in HWP. By comparing the results of the four designed scenarios, it follows that the scenario with the greatest mitigation potential, is the one assuming the optimal use of wood assortments and limitation of industrial roundwood foreign trade.


Sign in / Sign up

Export Citation Format

Share Document