scholarly journals Trade-offs and spatial variation of functional traits of tree species in a subtropical forest in southern Brazil

2016 ◽  
Vol 9 (6) ◽  
pp. 855-859 ◽  
Author(s):  
FDF Missio ◽  
P Higuchi ◽  
ACD Silva ◽  
SJ Longhi ◽  
B Salami ◽  
...  
2015 ◽  
Vol 18 (11) ◽  
pp. 1181-1189 ◽  
Author(s):  
Ronghua Li ◽  
Shidan Zhu ◽  
Han Y. H. Chen ◽  
Robert John ◽  
Guoyi Zhou ◽  
...  

2016 ◽  
Vol 88 (suppl 1) ◽  
pp. 467-477 ◽  
Author(s):  
MÁRCIA BÜNDCHEN ◽  
MARIA REGINA T. BOEGER ◽  
CARLOS B. REISSMANN ◽  
KELLY M. GERONAZZO

ABSTRACT The purpose of this study was to analyze the seasonal variation in the nutrient and pigment content of leaves from five tree species - of which three are perennial (Cupania vernalis, Matayba elaeagnoides and Nectandra lanceolata) and two are deciduous (Cedrela fissilis and Jacaranda micrantha) - in an ecotone between a Deciduous Seasonal Forest and a Mixed Ombrophilous Forest in the state of Santa Catarina, Brazil. Leaf samples were collected in the four seasons of the year to determine the content of macronutrients (N, K, P, Mg, Ca, S) and photosynthetic pigments (Chla, Chlb, Chltot, Cartot, Chla:Chlb and Cartot:Chltot). The principal component analysis showed that leaf pigments contributed to the formation of the first axis, which explains most of the data variance for all species, while leaf nutrient contribution showed strong interspecific variation. These results demonstrate that the studied species have different strategies for acquisition and use of mineral resources and acclimation to light, which are determinant for them to coexist in the forest environment.


Flora ◽  
2021 ◽  
Vol 279 ◽  
pp. 151806
Author(s):  
Edilvane Inês Zonta ◽  
Guilherme Krahl de Vargas ◽  
João André Jarenkow

Ecology ◽  
2012 ◽  
Vol 93 (1) ◽  
pp. 191-205 ◽  
Author(s):  
María Uriarte ◽  
James S. Clark ◽  
Jess K. Zimmerman ◽  
Liza S. Comita ◽  
Jimena Forero-Montaña ◽  
...  

2021 ◽  
Author(s):  
vivek pandi ◽  
Kanda Naveen Babu

Abstract The present study was carried out to analyse the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy-infestation by lianas. A total of 12 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (Liana+ and Liana−). In the liana-free environment (L−), evergreen trees had significantly higher specific leaf mass (LMA) and leaf dry matter content (LDMC) than the deciduous species. Whereas, the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed to the well-established global trait-pair relationships (SLA Vs Nmass, Lth Vs SLA, Nmass Vs Lth, Nmass Vs LDMC, LDMC Vs SLA). There was no significant difference between L+ and L− individuals in any leaf functional traits studied in the deciduous species. However, evergreen species showed marked differences in the total chlorophyll content (Chlt), chlorophyll b (Chlb), SLA, and LMA between L+ and L− individuals of the same species. Deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environment (L−) whereas, evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). The result revealed the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species. The results also showed the differential impact of liana colonization on the host trees with contrasting leaf habits. Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment. Further, the magnitude of such impact may vary among species of different leaf habits. The increased proliferation of lianas in the tropical forest canopies may pose a severe threat to the whole forest carbon assimilation rates.


2021 ◽  
Author(s):  
Rose A. Marks ◽  
Mpho Mbobe ◽  
Marilize Greyling ◽  
Jennie Pretorius ◽  
D. Nicholas McLetchie ◽  
...  

ABSTRACTResilience to abiotic stress is associated with a suite of functional traits related to defense and longevity. Stress tolerant plants are generally slow growing with extended leave lifespans and reduced allocation to reproduction. Resurrection plants are ideal systems to test for trade-offs associated with stress tolerance due to their extreme resiliency. While, growth defense trade-offs are well-characterized, few studies have tested for natural variation associated with tolerating the harshest environments. Here, we surveyed a suite of functional traits related to stress tolerance, leaf economics, and reproductive allocation in natural populations of the South African resurrection plant Myrothamnus flabellifolia. We selected three distinct field sites in South Africa ranging from mesic to xeric. Despite considerable environmental variation across the study area, M. flabellifolia plants were extremely and similarly stress tolerant at all sites. However, we detected notable variation in other life history and morphological traits. Plants in more mesic sites were larger, faster growing, and had more inflorescences. In contrast, plants from the most xeric sites appeared to invest more in persistence and defense, with lower growth rates and less reproductive allocation. Together, this suggests that desiccation tolerance is a binary trait in M. flabellifolia with little natural variation, but that other phenotypes are more labile. The trait syndromes exhibited by plants at the different study sites align with general expectations about growth defense tradeoffs associated with the colonization of extreme environments. We show that plants from the least stressful sites are more reproductive and faster growing, whereas plants from the most stressful sites were slower growing and less reproductive. These findings suggest that M. flabellifolia plants are finely tuned to their environment.


Sign in / Sign up

Export Citation Format

Share Document