scholarly journals Role of photosynthesis and stomatal conductance on the long-term rising of intrinsic water use efficiency in dominant trees in three old-growth forests in Bosnia-Herzegovina and Montenegro

2021 ◽  
Vol 14 (1) ◽  
pp. 53-60
Author(s):  
C Palandrani ◽  
R Motta ◽  
P Cherubini ◽  
M Curović ◽  
V Dukić ◽  
...  
2018 ◽  
Vol 36 (1) ◽  
pp. 7-13
Author(s):  
Melissa C. Smith ◽  
Richard N. Mack

Abstract Suitable plant water dynamics and the ability to withstand periods of low moisture input facilitate plant establishment in seasonally arid regions. Temperate bamboos are a major constituent of mixed evergreen and deciduous forests throughout temperate East Asia but play only an incidental role in North American forests and are altogether absent in the Pacific Northwest forest. Many bamboo species are classified as mesic or riparian, but none are considered drought tolerant. To assess their ability to withstand low water, we subjected five Asian temperate and one North American temperate bamboo species to three irrigation treatments: 100%, 50%, and 10% replacement of water lost through evapotranspiration. Plants were irrigated every four days over a 31-day period. Plant response to treatments was measured with stomatal conductance, leaf xylem water potentials, and intrinsic water use efficiency (iWUE). Pleioblastus distichus and Pseudosasa japonica showed significant reductions in conductance between high and low irrigation treatments. Sasa palmata had significantly lower stomatal conductance in all treatments. Pleioblastus chino displayed significantly higher iWUE in the mid irrigation treatment and Arunindaria gigantea displayed significantly lower iWUE than P. chino and S. palmata in the low irrigation treatment. The Asian bamboo species examined here tolerate low water availability and readily acclimate to different soil moisture conditions. Index words: Temperate bamboos, irrigation response, stomatal conductance, intrinsic water use efficiency. Species used in this study: Giant Cane [Arundinaria gigantea (Walt.) Muhl.]; Pleioblastus chino (Franchet & Savatier) Makino; Pleioblastus distichus (Mitford) Nakai; Pseudosasa japonica (Makino); Sasa palmata (Bean) Nakai.


Chemosphere ◽  
2003 ◽  
Vol 50 (2) ◽  
pp. 217-222 ◽  
Author(s):  
S.W. Leavitt ◽  
S.B. Idso ◽  
B.A. Kimball ◽  
J.M. Burns ◽  
A. Sinha ◽  
...  

2016 ◽  
Author(s):  
Kathrin M. Keller ◽  
Sebastian Lienert ◽  
Anil Bozbiyik ◽  
Thomas F. Stocker ◽  
Olga V. Churakova ◽  
...  

Abstract. Measurements of the stable carbon isotope ratio (δ13C) on annual tree rings offer new opportunities to evaluate mechanisms of variations in photosynthesis and stomatal conductance under changing CO2 and climate, especially in conjunction with process-based biogeochemical model simulations. The isotopic discrimination is indicative of the ratio between the CO2 partial pressure in the intercellular cavities and the atmosphere (ci / ca) and of the ratio of assimilation to stomatal conductance, termed intrinsic water-use efficiency (iWUE). We performed isotope-enabled simulations over the industrial period with the land biosphere module (CLM4.5) of the Community Earth System Model and the LPX-Bern dynamic global vegetation model. Results for C3 tree species show good agreement with a global compilation of δ13C measurements on leaves, though modeled 13C discrimination by C3 trees is smaller in arid regions than measured. A compilation of seventy-six tree-ring records, mainly from Europe, boreal Asia, and western North America, suggest on average small 20th-century changes in isotopic discrimination and an increase in iWUE of about 27 % since 1900. LPX-Bern results match these century-scale reconstructions, supporting the idea that the physiology of stomata has evolved to optimize trade-offs between carbon gain by assimilation and water loss. In contrast, CLM4.5 simulates an increase in discrimination and in turn a change in iWUE that is almost twice as large as revealed by the tree-ring data. Factorial simulations show that these changes are mainly in response to rising atmospheric CO2. The results suggest that the down-regulation of ci / ca and of photosynthesis by nitrogen limitation is possibly too strong in the standard setup of CLM4.5 or there may be more fundamental problems associated with the prescribed relationship between conductance and assimilation.


Sign in / Sign up

Export Citation Format

Share Document