pinus tabulaeformis carr
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 2)

Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 281
Author(s):  
Xinyi Guo ◽  
Changhui Peng ◽  
Tong Li ◽  
Jingjing Huang ◽  
Hanxiong Song ◽  
...  

Intense and frequent drought events strongly affect plant survival. Non-structural carbohydrates (NSCs) are important “buffers” to maintain plant functions under drought conditions. We conducted a drought manipulation experiment using three-year-old Pinus tabulaeformis Carr. seedlings. The seedlings were first treated under different drought intensities (i.e., no irrigation, severe, and moderate) for 50 days, and then they were re-watered for 25 days to explore the dynamics of NSCs in the leaves, twigs, stems, and roots. The results showed that the no irrigation and severe drought treatments significantly reduced photosynthetic rate by 93.9% and 32.6% for 30 days, respectively, leading to the depletion of the starch storage for hydraulic repair, osmotic adjustment, and plant metabolism. The seedlings under moderate drought condition also exhibited starch storage consumption in leaves and twigs. After re-watering, the reduced photosynthetic rate recovered to the control level within five days in the severe drought group but showed no sign of recovery in the no irrigation group. The seedlings under the severe and moderate drought conditions tended to invest newly fixed C to starch storage and hydraulic repair instead of growth due to the “drought legacy effect”. Our findings suggest the depletion and recovery of starch storage are important strategies for P. tabulaeformis seedlings, and they may play key roles in plant resistance and resilience under environmental stress.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 133
Author(s):  
Bingyan Hao ◽  
Henrik Hartmann ◽  
Yuanqiao Li ◽  
Hongyan Liu ◽  
Fangzhong Shi ◽  
...  

Seasonal non-structural carbohydrate (NSC) dynamics in different organs can indicate the strategies trees use to cope with water stress; however, these dynamics remain poorly understood along a large precipitation gradient. In this study, we hypothesized that the correlation between water availability and NSC concentrations in different organs might be strengthened by decreasing precipitation in Pinus tabulaeformis Carr. forests in temperate China. Our results show that the concentrations of soluble sugars were lower in stems and coarse roots, and starch was higher in branches in the early growing season at drier sites. Throughout the growing season, the concentrations of soluble sugars increased in drier sites, especially for leaves, and remained stable in wetter sites, while starch concentrations were relatively stable in branches and stems at all sites. The NSC concentrations, mainly starch, decreased in coarse roots along the growing season at drier sites. Trees have a faster growth rate with an earlier cessation in active stem growth at drier sites. Interestingly, we also found a divergent relationship between NSCs in different organs and mean growing season water availability, and a stronger correlation was observed in drier sites. These results show that pine forests in arid and semi-arid regions of northern China exhibit different physiological responses to water availability, improving our understanding of the adaptive mechanisms of trees to water limitations in a warmer and drier climate.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 394
Author(s):  
Lars Sprengel ◽  
Zhongqian Cheng ◽  
Sandra-Maria Hipler ◽  
Shuirong Wu ◽  
Heinrich Spiecker

Forests are a large carbon sink with an additional substitution effect in the merchantable timber compartment of harvested trees, where carbon stored within the same volume of wood varies depending on wood density. Here, we investigated mean annual air-dry wood density variations depending on cambial age, annual radial increment, and two different stem heights of Larix gmelinii (Rupr.), Quercus mongolica Fisch. ex. Ledeb., and Pinus tabulaeformis Carr. from a first climatic region (Mulan Forest) and exclusively of P. tabulaeformis from a second climatic region (Zhongtiaoshan Forest) in the temperate zone of China. We applied linear mixed-effects models with partly transformed variables and estimated marginal means for pairwise comparisons. Results showed that mean wood density was not significantly different between L. gmelinii (0.626 g cm−3) and Q. mongolica (0.596 g cm−3), but significantly different between P. tabulaeformis from the two different climatic regions (0.445 g cm−3 in Mulan Forest and 0.521 g cm−3 in Zhongtiaoshan Forest). Mean annual wood density within trees except for P. tabulaeformis from Mulan Forest was initially increasing until an intermediate cambial age, after which it decreased again to lower values. These findings showed that tree age had to be considered in assessing carbon sequestration in wood. It also could play an important role in decision making for forest management in Mulan Forest and show the benefit of the wood properties and carbon storage potential of the faster growing L. gmelinii compared to Q. mongolica. Furthermore, these findings gave an indication that intermediate old forest stands for some tree species accumulated more carbon per year within their woody biomass than young stands or old growth forests. Our results may have an impact on the planning of rotation lengths and of tree species composition for forest stands in Mulan Forest and Zhongtiaoshan Forest.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 752
Author(s):  
Liu ◽  
Bao ◽  
Bao

Chinese pine (Pinus tabulaeformis Carr.) plays an important role in maintaining ecosystem health and stability in western Liaoning Province and the southern Horqin sand land, Northeast China, with benefits including sand fixation and soil erosion. In the context of climate change, developing a better understanding of the relationship between climate factors and growth rates of this species will be extremely valuable in guiding management activities and meeting regional conservation objectives. Here, the results based on two groups of tree-ring samples show that the radial growth of Chinese pine is controlled primarily by water conditions. The longer chronology had the highest correlation coefficient with the January–September mean self-calibrating Palmer Drought Severity Index (scPDSI); therefore, drought variability was reconstructed for the period 1859–2014. Statistical analysis showed that our model explained 41.9% of the variance in radial growth during the 1951–2014 calibration period. Extreme dry and wet events, defined as the criteria of one standard deviation less or greater than the mean value, accounted for 19.9% and 18.6% of the 156-year climate record, respectively. During the past century, the regional hydroclimate experienced significant long-term fluctuations. The dry periods occurred from the early-1900s–1930s and 1980s–2000s, and the wet periods occurred from the 1940s–1970s. The drought reconstruction was consistent with the decreasing trend of the East Asian summer monsoon since the late 1970s. The reconstructed temporal patterns in hydroclimate in western Liaoning were closely related to the large-scale climate drivers in the North Pacific and the tropical equatorial Pacific. The teleconnections were confirmed by spatial correlations between the reconstructed sequence and sea surface temperature (SST) in the North Pacific, as well as the correlations with the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) indices. Aerosols played an important role in affecting drought variations over the past several decades. Moisture stress caused by global warming and interdecadal changes in the PDO will have long-term effects on the growth of pines in the study area in the future.


Sign in / Sign up

Export Citation Format

Share Document