scholarly journals Long-term changes in the tree radial growth and intrinsic water-use efficiency of Chuanxi spruce (Picea likiangensis var. balfouriana) in southwestern China

2018 ◽  
Vol 28 (6) ◽  
pp. 833-844 ◽  
Author(s):  
Yang Wang ◽  
Yong Zhang ◽  
Ouya Fang ◽  
Xuemei Shao
Chemosphere ◽  
2003 ◽  
Vol 50 (2) ◽  
pp. 217-222 ◽  
Author(s):  
S.W. Leavitt ◽  
S.B. Idso ◽  
B.A. Kimball ◽  
J.M. Burns ◽  
A. Sinha ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 804 ◽  
Author(s):  
Kanglong Lu ◽  
Ning Chen ◽  
Cankun Zhang ◽  
Xiaoxue Dong ◽  
Changming Zhao

Climate variability can exert a powerful impact on biotic competition, but past studies have focused largely on short-lived species, with a lack of attention to long-lived species such as trees. Therefore, there is a need to evaluate how competition regulates the climate-growth relationship in mature trees. We sampled the dominant tree species, Picea wilsonii Mast., on Xinglong Mountain, China, and studied the above issues by analyzing the relationship between tree radial growth, precipitation, and competition. In relatively wet years (precipitation > average), there was no significant difference in climate sensitivity between different competition classes. However, trees suffering from highly competitive stress were more sensitive to climate variability in all years, and particularly in the subset of years that was relatively drought (precipitation < average). These results suggest that competition enhances its ability to regulate tree growth response to climate variability in adverse weather conditions. Competition for resources between trees was asymmetrical, and an increase in height could give trees a disproportionate benefit. Thus, at trunk-level, both basal area incremental growth and intrinsic water-use efficiency of trees subjected to low competitive stress were significantly higher than trees that are subjected to highly competitive stress. Although the intrinsic water-use efficiency of trees under highly competitive stress increased more rapidly as the drought level increases, this did not change the fact that the radial growth of them declined more. Our research is valuable for the development of individual-tree growth models and advances our understanding for forest management under global climate change.


2009 ◽  
Vol 96 (10) ◽  
pp. 1779-1786 ◽  
Author(s):  
Abraham J. Miller-Rushing ◽  
Richard B. Primack ◽  
Pamela H. Templer ◽  
Sarah Rathbone ◽  
Sharda Mukunda

2015 ◽  
Vol 12 (3) ◽  
pp. 2745-2786
Author(s):  
G. Gea-Izquierdo ◽  
F. Guibal ◽  
R. Joffre ◽  
J. M. Ourcival ◽  
G. Simioni ◽  
...  

Abstract. Climatic drivers limit several important physiological processes involved in ecosystem carbon dynamics including gross primary productivity (GPP) and carbon allocation in vegetation. Climatic variability limits these two processes differently. We developed an existing mechanistic model to analyse photosynthesis and variability in carbon allocation in two evergreen species at two Mediterranean forests. The model was calibrated using a combination of eddy covariance CO2 flux data, dendrochronological time series of secondary growth and forest inventory data. The model was modified to be climate explicit in the key processes addressing acclimation of photosynthesis and allocation. It succeeded to fit both the high- and the low-frequency response of stand GPP and carbon allocation to the stem. This would support its capability to address both carbon source and sink limitations. Simulations suggest a decrease in mean stomatal conductance in response to environmental changes and an increase in mean annual intrinsic water use efficiency (iWUE) in both species during the last 50 years. However, this was not translated on a parallel increase in ecosystem water use efficiency (WUE). A long-term decrease in annual GPP matched the local trend in precipitation since the 1970s observed in one site. In contrast, GPP did not show a negative trend and the trees buffered the climatic variability observed at the site where long-term precipitation remained stable. In our simulations these temporal changes would be partly related to increasing [CO2] because the model includes biochemical equations where photosynthesis is directly linked to [CO2]. Long-term trends in GPP did not match those in growth, in agreement with the C-sink hypothesis. There is a great potential to use the model with abundant dendrochronological data and analyse forest performance under climate change. This would help to understand how different interfering environmental factors produce instability in the climatic signal expressed in tree-rings.


Sign in / Sign up

Export Citation Format

Share Document