scholarly journals Molecular Dynamics Simulation and Analysis of Crystallization System in PVC Tunnel Drain-Pipe at Different Temperatures

2021 ◽  
Vol 17 (1) ◽  
pp. 59-66
Author(s):  
Zhongwei Hou ◽  
Xuefu Zhang ◽  
Yuanjiang Zhou
RSC Advances ◽  
2016 ◽  
Vol 6 (11) ◽  
pp. 9096-9105 ◽  
Author(s):  
Gholam Hossien Rounaghi ◽  
Mostafa Gholizadeh ◽  
Fatemeh Moosavi ◽  
Iman Razavipanah ◽  
Hossein Azizi-Toupkanloo ◽  
...  

The variation of molar conductance versus mole ratio for (kryptofix 22DD·La)3+ complex in methanol solution at different temperatures is in accordance with the variation of pair correlation function of oxygen atoms.


Author(s):  
Yuliya V. Kordonskaya ◽  
Margarita A. Marchenkova ◽  
Vladimir I. Timofeev ◽  
Yulia A. Dyakova ◽  
Yurii V. Pisarevsky ◽  
...  

Author(s):  
Aneet D. Narendra ◽  
Abhijit Mukherjee

Examination of metastable states of fluids provides important information pertinent to cavitation and homogeneous nucleation. Homogeneous nucleation, in particular, is an important topic of research. Molecular Dynamics simulation is a well-endorsed method to simulate metastabilitites, as they are limited to mesoscopic scales of length and time and this life-time is essentially zero on a laboratory time scale. In the present study, a molecular dynamics code has been used in conjunction with MOLDY to investigate phase change in a Lennard-Jones liquid. The Lennard-Jones atoms were subjected to different temperatures at various number densities and the pressure was recorded for each case. The appearance of a change of phase is characterized by the formation of clusters or formation of voids as described by the radial distribution function.


2017 ◽  
Vol 28 (2) ◽  
pp. 175-185 ◽  
Author(s):  
Bo Xu ◽  
Zhenqian Chen

To provide a microcosmic theoretical support for the reduction of formaldehyde in building material, the diffusion process was investigated by molecular dynamics simulation. In addition, the diffusion model of formaldehyde molecules in crystalline and amorphous cellulose was built, and diffusion coefficients at different temperatures and electric fields were studied. The simulation temperature was from 293 to 393 K and electric field was from 0 to 400 kV/m. Diffusion coefficient increased with greater temperature and electric field both in crystalline and amorphous region. However, the diffusion coefficient in amorphous region could be ignored for it was two orders of magnitude lower than diffusion coefficient in crystalline region. The relationship between diffusion coefficient and temperature, and the relationship between diffusion coefficient and electric field were obtained by simulation, verified by the experiment. Temperature was shown to have a significant contribution to formaldehyde diffusion than electric field. Compared with experimental studies, the molecular dynamics simulation could only analyse the diffusion coefficient qualitatively because of the difference between micro-scale and macro-scale.


Sign in / Sign up

Export Citation Format

Share Document