scholarly journals FINITE-DIFFERENCE ANALYSIS FOR THE LINEAR THERMOPOROELASTICITY PROBLEM AND ITS NUMERICAL RESOLUTION BY MULTIGRID METHODS

2012 ◽  
Vol 17 (2) ◽  
pp. 227-244 ◽  
Author(s):  
Natalia Boal ◽  
Francisco Jos´e Gaspar ◽  
Francisco Lisbona ◽  
Petr Vabishchevich

This paper deals with the numerical solution of a two-dimensional thermoporoelasticity problem using a finite-difference scheme. Two issues are discussed: stability and convergence in discrete energy norms of the finite-difference scheme are proved, and secondly, a distributive smoother is examined in order to find a robust and efficient multigrid solver for the corresponding system of equations. Numerical experiments confirm the convergence properties of the proposed scheme, as well as fast multigrid convergence.

2001 ◽  
Vol 1 (2) ◽  
pp. 125-137 ◽  
Author(s):  
Raimondas Čiegis ◽  
Vadimas Starikovičius

AbstractThis work discusses issues on the design and analysis of finite difference schemes for 3D modeling the process of moisture motion in the wood. A new finite difference scheme is proposed. The stability and convergence in the maximum norm are proved for Robin boundary conditions. The influence of boundary conditions is investigated, and results of numerical experiments are presented.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Jinsong Hu ◽  
Bing Hu ◽  
Youcai Xu

We study the initial-boundary problem of dissipative symmetric regularized long wave equations with damping term. Crank-Nicolson nonlinear-implicit finite difference scheme is designed. Existence and uniqueness of numerical solutions are derived. It is proved that the finite difference scheme is of second-order convergence and unconditionally stable by the discrete energy method. Numerical simulations verify the theoretical analysis.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Jaemin Shin ◽  
Yongho Choi ◽  
Junseok Kim

In this study, we apply a finite difference scheme to solve the Cahn–Hilliard equation with generalized mobilities in complex geometries. This method is conservative and unconditionally gradient stable for all positive variable mobility functions and complex geometries. Herein, we present some numerical experiments to demonstrate the performance of this method. In particular, using the fact that variable mobility changes the growth rate of the phases, we employ space-dependent mobility to design a cylindrical biomedical scaffold with controlled porosity and pore size.


2016 ◽  
Vol 26 (3) ◽  
pp. 429-435 ◽  
Author(s):  
Roman I. Parovik

Abstract The paper deals with the model of variable-order nonlinear hereditary oscillator based on a numerical finite-difference scheme. Numerical experiments have been carried out to evaluate the stability and convergence of the difference scheme. It is argued that the approximation, stability and convergence are of the first order, while the scheme is stable and converges to the exact solution.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Maobo Zheng ◽  
Jun Zhou

An average linear finite difference scheme for the numerical solution of the initial-boundary value problem of Generalized Rosenau-KdV equation is proposed. The existence, uniqueness, and conservation for energy of the difference solution are proved by the discrete energy norm method. It is shown that the finite difference scheme is 2nd-order convergent and unconditionally stable. Numerical experiments verify that the theoretical results are right and the numerical method is efficient and reliable.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinye Shen ◽  
Martin Stynes ◽  
Zhi-Zhong Sun

Abstract A time-fractional initial-boundary value problem of wave type is considered, where the spatial domain is ( 0 , 1 ) d (0,1)^{d} for some d ∈ { 1 , 2 , 3 } d\in\{1,2,3\} . Regularity of the solution 𝑢 is discussed in detail. Typical solutions have a weak singularity at the initial time t = 0 t=0 : while 𝑢 and u t u_{t} are continuous at t = 0 t=0 , the second-order derivative u t ⁢ t u_{tt} blows up at t = 0 t=0 . To solve the problem numerically, a finite difference scheme is used on a mesh that is graded in time and uniform in space with the same mesh size ℎ in each coordinate direction. This scheme is generated through order reduction: one rewrites the differential equation as a system of two equations using the new variable v := u t v:=u_{t} ; then one uses a modified L1 scheme of Crank–Nicolson type for the driving equation. A fast variant of this finite difference scheme is also considered, using a sum-of-exponentials (SOE) approximation for the kernel function in the Caputo derivative. The stability and convergence of both difference schemes are analysed in detail. At each time level, the system of linear equations generated by the difference schemes is solved by a fast Poisson solver, thereby taking advantage of the fast difference scheme. Finally, numerical examples are presented to demonstrate the accuracy and efficiency of both numerical methods.


Sign in / Sign up

Export Citation Format

Share Document