scholarly journals SIMULATION OF EGNOS SATELLITE NAVIGATION SIGNAL USAGE FOR AIRCRAFT LPV PRECISION INSTRUMENT APPROACH

Aviation ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 171-181
Author(s):  
Michal Hvezda

Satellite navigation has become a very important topic in the air transport industry along with its application in instrument approach procedures. Recently, extracted statistical characteristics of the European Geostationary Navigation Overlay Service (EGNOS) satellite signal have been made available from real measurements in the Czech Republic. The numerical modeling approach is taken for a feasibility study of automatic aircraft control during the Localizer Performance with Vertical Guidance (LPV) precision approach based on such navigation data. The model incorporates Kalman filtering of the stochastic navigation signal, feed-back control of L-410 aircraft dynamics and the calculation of approach progress along the predefined procedure. Evaluation of the performance of the system prototype is performed using the scenarios developed with a strong interest in altitude control. The specific scenario is focused on a curved approach which offers a huge advantage of the approaches based on the Satellite-based Augmentation System (SBAS) compared to ones with the Instrument Landing System (ILS). Outputs of simulation executions are statistically analyzed and assessed against predefined navigation performance goals equivalent to ILS categories with a positive outcome.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Karolina Krzykowska ◽  
Michał Krzykowski

Navigation is a key element influencing fluent, rapid, and safe transport of people and goods. During the last years, special attention was paid to satellite navigation, which is a part of radionavigation where positioning is done thanks to artificial satellites. Issues of application and development of satellite navigation systems in civil aviation are the subject of numerous research and scientific studies in the world. The quality of satellite signal determined by parameters such as accuracy, continuity, availability, and integrity determines possibility of its operational use. Particular attention of scientific research is therefore devoted to the requirements and limitations imposed on satellite systems prior to their implementation in aviation. This extremely important aspect justified undertaking of the aforementioned problem in this article. The paper attempts to answer the question on how to facilitate selection of navigation techniques for the aircraft operator, taking into account factors determining the accuracy, continuity, availability, and integrity of the satellite signal. As a result, the purpose of the work was defined as development of a method for forecasting the values of satellite navigation signal parameters used in air transport by artificial neural networks, taking into account selected atmospheric conditions. Results included in the work indicate further directions of satellite navigation system development. Due to authors’ opinion, the researches should focus especially on the analysis of real-time satellite signal parameter performance or creating applications for UAVs automatically deciding about used techniques of navigation.


Author(s):  
M. K. Savkin ◽  
A. R. Filatov

Nowadays majority of navigation methods, used in unmanned flying vehicles, are based on satellite navigation systems, such as GPS or GLONASS, or are amplified with them. But hardware, that uses such systems, can’t work in difficult conditions, for example causes by relief: with insufficient number of satellites or at low satellite signal. Satellite navigation systems are vulnerable for methods of radio defense: satellite signal can be deadened or replaced. That is why such systems usage is unacceptable while critical missions during military operations, emergency or reconnaissance. The article briefly describes components used for building alternative satellite-free navigation systems for flying vehicles. For each component its purpose and brief description of working principle are given, advantages and disadvantages are considered.


2014 ◽  
Vol 599-601 ◽  
pp. 1601-1604
Author(s):  
Shao Kai Wu ◽  
Jing Lei Zhang

On the MapX ActiveX environment, an embedded Beidou satellite navigation system is established. This system is developed under the visual programming development environment (C#2008), achieved satellite signal receiving. The positioning information receiving and displaying is realized by a Beidou navigation module and communicated with the computer via the serial port COM component.


Sign in / Sign up

Export Citation Format

Share Document