scholarly journals Analysis of air-to-water heat pump in cold climate: comparison between experiment and simulation

2015 ◽  
Vol 7 (4) ◽  
pp. 468-474
Author(s):  
Karolis Januševičius ◽  
Giedrė Streckienė

Heat pump systems are promising technologies for current and future buildings and this research presents the performance of air source heat pump (ASHP) system. The system was monitored, analysed and simulated using TRNSYS software. The experimental data were used to calibrate the simulation model of ASHP. The specific climate conditions are evaluated in the model. It was noticed for the heating mode that the coefficient of performance (COP) varied from 1.98 to 3.05 as the outdoor temperature changed from –7.0 ºC to +5.0 ºC, respectively. TRNSYS simulations were also performed to predict seasonal performance factor of the ASHP for Vilnius city. It was identified that seasonal performance prediction could be approximately 15% lower if frost formation effects are not included to air-water heat pump simulation model.

2021 ◽  
Author(s):  
Amir Alizadeh Safa

The thermal performance of a new two-stage variable capacity air source heat pump (ASHP) and a horizontal ground loop ground source heat pump (GSHP) was investigated side-by-side at the Archetype Sustainable Twin Houses located in Toronto, Canada. The heat pumps were tested in cooling mode, as well as heating mode under extreme winter conditions. In cooling mode, the ASHP COP ranged from 4.7 to 5.7 at an outdoor temperature of 33 degrees C and 16 degrees C respectively, while the GSHP COP ranged from 4.9 (at an ELT of 8.5 degrees C and EST of 19.2 degrees C) to 5.6 (at an ELT of 12. 4 degrees C and EST of 17.8 degrees C). In heating mode, the ASHP COP ranged from 1.79 to 5.0 at an outdoor temperature of -19 degrees C and 9 degrees C respectively, while the GSHP COP ranged from 3.05 (at an ELT of 44.4 degrees C and an EST of 2.7 degrees C) to 3.44 (at an ELT of 41.5 degrees C and an EST of 5.48 degrees C) during the earlier winter test period. Data extrapolation and energy simulation was also performed to predict annual heat pump performance in Toronto as well as other Canadian regions.


Author(s):  
Getu Hailu ◽  
Peter Dash ◽  
Alan S. Fung

A theoretical investigation of a variable capacity air-to-air air source heat pump (VC-ASHP) coupled with a building integrated photovoltaic/thermal (BIPV/T) system is presented in this paper. The BIPV/T system was integrated into the roof and the wall. Air was circulated behind the photovoltaic arrays to recover the thermal energy. The warm air recovered was supplied to the VC-ASHP. The thermal performance of the VC-ASHP was investigated for three scenarios when the heat pump is running in heating mode. The three scenarios are: (A) by feeding the ambient air to the ASHP; (B) by coupling the ASHP to the wall integrated BIPV/T only; and (C) by coupling the ASHP to the roof integrated BIPV/T only. The coefficient of performance (COP) of the VC-ASHP was evaluated for these three separate scenarios and compared. A typical winter day result suggests that the COP of the ASHP can be improved by coupling the VC-ASHP to either of the BIPV/T systems, i.e., either to the roof integrated BIPV/T system or to the wall integrated BIPV/T system.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 528
Author(s):  
Sangmu Bae ◽  
Soowon Chae ◽  
Yujin Nam

The concept of zero energy buildings (ZEBs) has recently been actively introduced in the building sector, globally, to reduce energy consumption and carbon emissions. For the implementation of ZEBs, renewable energy systems, such as solar collectors, photovoltaic (PV) systems, and ground source heat pump (GSHP) systems, have been used. The system performance of solar collectors and PV systems are dependent on the weather conditions. A GSHP system requires a large area for boring machines and mud pump machines. Therefore, inhabitants of an existing small-scale buildings hesitate to introduce GSHP systems due to the difficulties in installation and limited construction area. This study proposes an integrate photovoltaic-thermal (PVT) and air source heat pump (ASHP) system for realizing ZEB in an existing small-scale building. In order to evaluate the applicability of the integrated PVT-ASHP system, a dynamic simulation model that combines the PVT-ASHP system model and the building load model based on actual building conditions was constructed. The heating and cooling performances of the system for one year were analyzed using the dynamic simulation model. As the simulation analysis results, the average coefficient of performance (COP) for heating season was 5.3, and the average COP for cooling season was 16.3., respectively. From April to June, the electrical produced by the PVT module was higher than the power consumption of the system and could realize ZEB.


2021 ◽  
Author(s):  
Amir Alizadeh Safa

The thermal performance of a new two-stage variable capacity air source heat pump (ASHP) and a horizontal ground loop ground source heat pump (GSHP) was investigated side-by-side at the Archetype Sustainable Twin Houses located in Toronto, Canada. The heat pumps were tested in cooling mode, as well as heating mode under extreme winter conditions. In cooling mode, the ASHP COP ranged from 4.7 to 5.7 at an outdoor temperature of 33 degrees C and 16 degrees C respectively, while the GSHP COP ranged from 4.9 (at an ELT of 8.5 degrees C and EST of 19.2 degrees C) to 5.6 (at an ELT of 12. 4 degrees C and EST of 17.8 degrees C). In heating mode, the ASHP COP ranged from 1.79 to 5.0 at an outdoor temperature of -19 degrees C and 9 degrees C respectively, while the GSHP COP ranged from 3.05 (at an ELT of 44.4 degrees C and an EST of 2.7 degrees C) to 3.44 (at an ELT of 41.5 degrees C and an EST of 5.48 degrees C) during the earlier winter test period. Data extrapolation and energy simulation was also performed to predict annual heat pump performance in Toronto as well as other Canadian regions.


Author(s):  
Giulio Vialetto ◽  
Marco Noro ◽  
Masoud Rokni

In this paper, a new heat recovery for a microcogeneration system based on solid oxide fuel cell and air source heat pump (HP) is presented with the main goal of improving efficiency on energy conversion for a residential building. The novelty of the research work is that exhaust gases after the fuel cell are first used to heat water for heating/domestic water and then mixed with the external air to feed the evaporator of the HP with the aim of increasing energy efficiency of the latter. This system configuration decreases the possibility of freezing of the evaporator as well, which is one of the drawbacks for air source HP in Nordic climates. A parametric analysis of the system is developed by performing simulations varying the external air temperature, air humidity, and fuel cell nominal power. Coefficient of performance (COP) can increase more than 100% when fuel cell electric power is close to its nominal (50 kW), and/or inlet air has a high relative humidity (RH) (close to 100%). Instead, the effect of mixing the exhausted gases with air may be negative (up to −25%) when fuel cell electric power is 20 kW and inlet air has 25% RH. Thermodynamic analysis is carried out to prove energy advantage of such a solution with respect to a traditional one, resulting to be between 39% and 44% in terms of primary energy. The results show that the performance of the air source HP increases considerably during cold season for climates with high RH and for users with high electric power demand.


Solar Energy ◽  
2021 ◽  
Vol 230 ◽  
pp. 278-297
Author(s):  
Gleberson Marques Humia ◽  
Willian Moreira Duarte ◽  
Juan Jose Garcia Pabon ◽  
Tiago de Freitas Paulino ◽  
Luiz Machado

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2642 ◽  
Author(s):  
Yi Zhang ◽  
Guanmin Zhang ◽  
Aiqun Zhang ◽  
Yinhan Jin ◽  
Ruirui Ru ◽  
...  

Frost layer on the outdoor air heat exchanger surface in an air-source heat pump (ASHP) can decrease the system coefficient of performance (COP). Although the common defrosting and anti-frosting methods can improve the COP, the periodic defrosting not only reduces the system energy efficiency but also deteriorates the indoor environment. To solve these problems, it is necessary to clearly understand the frosting phenomenon and to achieve the system frost-free operation. This paper focused firstly on the analyses of frosting pathways and frosting maps. Followed by summarizing the characteristics of frost-free technologies. And then the performances of two types of frost-free ASHP (FFASHP) systems were reviewed, and the exergy and economic analysis of a FFASHP heating system were carried out. Finally, the existing problems related to the FFASHP technologies were proposed. Results show that the existing frosting maps need to be further improved. The FFASHP systems can not only achieve continuous frost-free operation but reduce operating cost. And the total COP of the FFASHP heating system is approximately 30–64% higher than that of the conventional ASHP system under the same frosting conditions. However, the investment cost of the FFASHP system increases, and its reliability also needs further field test in a wider frosting environment. In the future, combined with a new frosting map, the control strategy for the FFASHP system should be optimized.


Author(s):  
Wu Huagen ◽  
Shu Pengcheng ◽  
Zhao Yuanyang ◽  
Xing Ziwen

The air-source heat pump has been widely used in industrial refrigeration and central air-conditioning applications because of its unique superiority. An important consideration in the design of heat pump is improving its COP (coefficient of performance). In this paper, the results of experimental investigation on the effects of alternative refrigerants (R22, R134a, R404A and R407C) and economizer on the performance of heat pump are presented. The COP of the heat pump used R134a is up to 4.5% higher than R22, but its capacity got a 37.08% decrease. The refrigerant R407C applied in heat pump can improve the capacity up to 7.86% than R22, but its COP shows a decrease up to 5.92%. The refrigerant R404A used in heat pump will result in poor capacity and COP compared to R22. The economizer system used in heat pump will improve the COP, but as the superfeed pressure of the economizer increases, the system COP increases first, and then drops. So there exists an optimal superfeed pressure of the economizer for the best COP. Also, the effect of the economizer on the screw compressor performance is analyzed by recording the P-v indicator diagram.


Sign in / Sign up

Export Citation Format

Share Document