scholarly journals FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS AND Ψ–HILFER FRACTIONAL DERIVATIVE

2019 ◽  
Vol 24 (4) ◽  
pp. 564-584 ◽  
Author(s):  
Mohammed S. Abdo ◽  
Satish K. Panchal ◽  
Hussien Shafei Hussien

Considering a fractional integro-differential equation with nonlocal conditions involving a general form of Hilfer fractional derivative with respect to another function. We show that weighted Cauchy-type problem is equivalent to a Volterra integral equation, we also prove the existence, uniqueness of solutions and Ulam-Hyers stability of this problem by employing a variety of tools of fractional calculus including Banach fixed point theorem and Krasnoselskii's fixed point theorem. An example is provided to illustrate our main results.


Author(s):  
KALIMUTHU KALIRAJ ◽  
E. Thilakraj ◽  
Ravichandran C ◽  
Kottakkaran Nisar

In this work, we analyse the controllability for certain classes of impulsive integro - differential equations(IIDE) of fractional order via Atangana Baleanu derivative involving finite delay with initial and nonlocal conditions using Banach fixed point theorem.



2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu ◽  
Ravi P. Agarwal

We prove the existence and uniqueness of solutions for two classes of infinite delay nonlinear fractional order differential equations involving Riemann-Liouville fractional derivatives. The analysis is based on the alternative of the Leray-Schauder fixed-point theorem, the Banach fixed-point theorem, and the Arzela-Ascoli theorem inΩ={y:(−∞,b]→ℝ:y|(−∞,0]∈ℬ}such thaty|[0,b]is continuous andℬis a phase space.



2021 ◽  
Vol 26 (5) ◽  
pp. 914-927
Author(s):  
Sergey Smirnov

The existence of a unique solution for a third-order boundary value problem with integral condition is proved in several ways. The main tools in the proofs are the Banach fixed point theorem and the Rus’s fixed point theorem. To compare the applicability of the obtained results, some examples are considered.



Author(s):  
Kazem Nouri ◽  
Marjan Nazari ◽  
Bagher Keramati

In this paper, by means of the Banach fixed point theorem and the Krasnoselskii's fixed point theorem, we investigate the existence of solutions for some fractional neutral functional integro-differential equations involving infinite delay. This paper deals with the fractional equations in the sense of Caputo fractional derivative and in the Banach spaces. Our results generalize the previous works on this issue. Also, an analytical example is presented to illustrate our results.



2019 ◽  
Vol 22 (2) ◽  
pp. 495-508 ◽  
Author(s):  
Jayanta Borah ◽  
Swaroop Nandan Bora

Abstract In this article, we establish a set of sufficient conditions for the existence of mild solution of a class of fractional differential equations with not instantaneous impulses. The results are obtained by using Banach fixed point theorem and Krasnoselskii’s fixed point theorem. An example is presented for validation of result.



2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Athasit Wongcharoen ◽  
Bashir Ahmad ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

We discuss the existence and uniqueness of solutions for the Langevin fractional differential equation and its inclusion counterpart involving the Hilfer fractional derivatives, supplemented with three-point boundary conditions by means of standard tools of the fixed-point theorems for single and multivalued functions. We make use of Banach’s fixed-point theorem to obtain the uniqueness result, while the nonlinear alternative of the Leray-Schauder type and Krasnoselskii’s fixed-point theorem are applied to obtain the existence results for the single-valued problem. Existence results for the convex and nonconvex valued cases of the inclusion problem are derived via the nonlinear alternative for Kakutani’s maps and Covitz and Nadler’s fixed-point theorem respectively. Examples illustrating the obtained results are also constructed. (2010) Mathematics Subject Classifications. This study is classified under the following classification codes: 26A33; 34A08; 34A60; and 34B15.



2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Karim Guida ◽  
Khalid Hilal ◽  
Lahcen Ibnelazyz ◽  
Ming Mei

The aim of this paper is to give existence results for a class of coupled systems of fractional integrodifferential equations with Hilfer fractional derivative in Banach spaces. We first give some definitions, namely the Hilfer fractional derivative and the Hausdorff’s measure of noncompactness and the Sadovskii’s fixed point theorem.



Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 333 ◽  
Author(s):  
Kui Liu ◽  
Michal Fečkan ◽  
D. O’Regan ◽  
JinRong Wang

In this paper, the Hyers–Ulam stability of linear Caputo–Fabrizio fractional differential equation is established using the Laplace transform method. We also derive a generalized Hyers–Ulam stability result via the Gronwall inequality. In addition, we establish existence and uniqueness of solutions for nonlinear Caputo–Fabrizio fractional differential equations using the generalized Banach fixed point theorem and Schaefer’s fixed point theorem. Finally, two examples are given to illustrate our main results.



Author(s):  
Zahra Ahmadi ◽  
Rahmatollah Lashkaripour ◽  
Hamid Baghani ◽  
Shapour Heidarkhani

AbstractIn this paper, we introduce an Caputo fractional high-order problem with a new boundary condition including two orders $\gamma \in \left({n}_{1}-1,{n}_{1}\right]$ and $\eta \in \left({n}_{2}-1,{n}_{2}\right]$ for any ${n}_{1},{n}_{2}\in \mathrm{ℕ}$. We deals with existence and uniqueness of solutions for the problem. The approach is based on the Krasnoselskii’s fixed point theorem and contraction mapping principle. Moreover, we present several examples to show the clarification and effectiveness.



2020 ◽  
Vol 23 (4) ◽  
pp. 1188-1207
Author(s):  
J. Vanterler da C. Sousa ◽  
Mouffak Benchohra ◽  
Gaston M. N’Guérékata

AbstractThis paper investigates the overall solution attractivity of the fractional differential equation involving the ψ-Hilfer fractional derivative and using the Krasnoselskii’s fixed point theorem. We highlight some particular cases of the results presented here, especially involving the Riemann-Liouville, thus illustrating the broad class of fractional derivatives to which these results can be applied.



Sign in / Sign up

Export Citation Format

Share Document