scholarly journals THE FIRST LOW-MASS BLACK HOLE X-RAY BINARY IDENTIFIED IN QUIESCENCE OUTSIDE OF A GLOBULAR CLUSTER

2016 ◽  
Vol 825 (1) ◽  
pp. 10 ◽  
Author(s):  
B. E. Tetarenko ◽  
A. Bahramian ◽  
R. M. Arnason ◽  
J. C. A. Miller-Jones ◽  
S. Repetto ◽  
...  
Keyword(s):  
X Ray ◽  
2020 ◽  
Vol 493 (4) ◽  
pp. 6033-6049 ◽  
Author(s):  
Yue Zhao ◽  
Craig O Heinke ◽  
Vlad Tudor ◽  
Arash Bahramian ◽  
James C A Miller-Jones ◽  
...  

ABSTRACT Using a 16.2-h radio observation by the Australia Telescope Compact Array and archival Chandra data, we found >5σ radio counterparts to four known and three new X-ray sources within the half-light radius (rh) of the Galactic globular cluster NGC 6397. The previously suggested millisecond pulsar (MSP) candidate, U18, is a steep-spectrum (Sν ∝ να; $\alpha =-2.0^{+0.4}_{-0.5}$) radio source with a 5.5-GHz flux density of 54.7 ± 4.3 $\mu \mathrm{ Jy}$. We argue that U18 is most likely a ‘hidden’ MSP that is continuously hidden by plasma shocked at the collision between the winds from the pulsar and companion star. The non-detection of radio pulsations so far is probably the result of enhanced scattering in this shocked wind. On the other hand, we observed the 5.5-GHz flux of the known MSP PSR J1740−5340 (U12) to decrease by a factor of >2.8 during epochs of 1.4-GHz eclipse, indicating that the radio flux is absorbed in its shocked wind. If U18 is indeed a pulsar whose pulsations are scattered, we note the contrast with U12’s flux decreases in eclipse, which argues for two different eclipse mechanisms at the same radio frequency. In addition to U12 and U18, we also found radio associations for five other Chandra X-ray sources, four of which are likely background galaxies. The last, U97, which shows strong H α variability, is mysterious; it may be either a quiescent black hole low-mass X-ray binary or something more unusual.


Author(s):  
R Pattnaik ◽  
K Sharma ◽  
K Alabarta ◽  
D Altamirano ◽  
M Chakraborty ◽  
...  

Abstract Low Mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star and the other is a less massive star. It is challenging to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest classifier to identify the type of compact object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the spectra of LMXB sources. We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification. With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT, XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster and robust classification of X-ray sources and can also be deployed as part of the data reduction pipeline.


2015 ◽  
Vol 64-66 ◽  
pp. 1-6 ◽  
Author(s):  
Xiang-Dong Li
Keyword(s):  
X Ray ◽  
Low Mass ◽  

Author(s):  
A. Jordán ◽  
G.R. Sivakoff ◽  
C.L. Sarazin ◽  
J.P. Blakeslee ◽  
E.L. Blanton ◽  
...  

2004 ◽  
Vol 194 ◽  
pp. 200-201
Author(s):  
Ivan Hubeny ◽  
Dayal T. Wickramasinghe

We investigate the effects of irradiation on the vertical structure of accretion discs around black holes and its impact on the emergent energy distribution. Models are presented for a 10 Solar mass black hole in a low mass X-ray binary assuming a black body spectrum for the incident radiation. We show that for a disc annulus at a given radius, the spectra become increasingly distorted as the incident flux increases relative to the viscously generated heating flux in the disc. Significant effects are apparent for rings even at distances of ~ 10,000 Schwarzschild radii from the black hole for realistic dilution factors.


2020 ◽  
Vol 497 (1) ◽  
pp. 1115-1126
Author(s):  
M Pereyra ◽  
D Altamirano ◽  
J M C Court ◽  
N Degenaar ◽  
R Wijnands ◽  
...  

ABSTRACT IGR J17091–3624 is a low-mass X-ray binary (LMXB), which received wide attention from the community thanks to its similarities with the bright black hole system GRS 1915+105. Both systems exhibit a wide range of highly structured X-ray variability during outburst, with time-scales from few seconds to tens of minutes, which make them unique in the study of mass accretion in LMXBs. In this work, we present a general overview into the long-term evolution of IGR J17091–3624, using Swift/XRT observations from the onset of the 2011–2013 outburst in 2011 February till the end of the last bright outburst in 2016 November. We found four re-flares during the decay of the 2011 outburst, but no similar re-flares appear to be present in the latter one. We studied, in detail, the period with the lowest flux observed in the last 10 yr, just at the tail end of the 2011–2013 outburst, using Chandra and XMM-Newton observations. We observed changes in flux as high as a factor of 10 during this period of relative quiescence, without strong evidence of softening in the spectra. This result suggests that the source has not been observed at its true quiescence so far. By comparing the spectral properties at low luminosities of IGR J17091–3624 and those observed for a well-studied population of LMXBs, we concluded that IGR J17091–3624 is most likely to host a black hole as a compact companion rather than a neutron star.


2019 ◽  
Vol 487 (3) ◽  
pp. 3488-3504
Author(s):  
Srimanta Banerjee ◽  
Chandrachur Chakraborty ◽  
Sudip Bhattacharyya

2015 ◽  
Vol 2 (1) ◽  
pp. 50-54
Author(s):  
P. A. Mason ◽  
E. L. Robinson ◽  
S. Gomez ◽  
J. V. Segura

We present new optical observations of V1408 Aql (= 4U 1957+115), the only low mass X-ray binary, black hole candidate known to be in a persistently soft state. We combine new broadband optical photometry with previously published data and derive a precise orbital ephemeris. The optical light curves display sinusoidal variations modulated on the orbital period as well as large night to night changes in mean intensity. The amplitude of the variations increases with mean intensity while maintaining sinusoidal shape. Considering the set of constraints placed by the X-ray and optical data we argue that V1408 Aql may harbor a very low mass black hole. Optical light curves of UW CrB display partial eclipses of the accretion disk by the donor star that vary both in depth and orbital phase. The new eclipses of UW CrB in conjunction with published eclipse timings are well fitted with a linear ephemeris. We derive an upper limit to the rate of change of the orbital period. By including the newly observed type I bursts with published bursts in our analysis, we find that optical bursts are not observed between orbital phases 0.93 and 0.07, i.e. they are not observable during partial eclipses of the disk.


Sign in / Sign up

Export Citation Format

Share Document