scholarly journals Searching For Transiting Planets Around Halo Stars. ii. Constraining the Occurrence Rate of Hot Jupiters

2021 ◽  
Vol 162 (3) ◽  
pp. 85
Author(s):  
Kiersten M. Boley ◽  
Ji Wang ◽  
Joel C. Zinn ◽  
Karen A. Collins ◽  
Kevin I. Collins ◽  
...  
2010 ◽  
Vol 6 (S276) ◽  
pp. 230-237
Author(s):  
Joshua N. Winn

AbstractThere are now more than 35 stars with transiting planets for which the stellar obliquity—or more precisely its sky projection—has been measured, via the eponymous effect of Rossiter and McLaughlin. The history of these measurements is intriguing. For 8 years a case was gradually building that the orbits of hot Jupiters are always well-aligned with the rotation of their parent stars. Then in a sudden reversal, many misaligned systems were found, and it now seems that even retrograde systems are not uncommon. I review the measurement technique underlying these discoveries, the patterns that have emerged from the data, and the implications for theories of planet formation and migration.


2021 ◽  
Vol 162 (4) ◽  
pp. 125
Author(s):  
Jared R. Kolecki ◽  
Ji Wang ◽  
Jennifer A. Johnson ◽  
Joel C. Zinn ◽  
Ilya Ilyin ◽  
...  

2010 ◽  
Vol 6 (S276) ◽  
pp. 243-247
Author(s):  
Nawal Husnoo ◽  
Frédéric Pont ◽  
Tsevi Mazeh ◽  
Daniel Fabrycky ◽  
Guillaume Hébrard ◽  
...  

AbstractMost short period transiting exoplanets have circular orbits, as expected from an estimation of the circularisation timescale using classical tidal theory. Interestingly, a small number of short period transiting exoplanets seem to have orbits with a small eccentricity. Such systems are valuable as they may indicate that some key physics is missing from formation and evolution models. We have analysed the results of a campaign of radial velocity measurements of known transiting planets with the SOPHIE and HARPS spectrographs using Bayesian methods and obtained new constraints on the orbital elements of 12 known transiting exoplanets. We also reanalysed the radial velocity data for another 42 transiting systems and show that some of the eccentric orbits reported in the Literature are compatible with a circular orbit. As a result, we show that the systems with circular and eccentric orbits are clearly separated on a plot of the planetary mass versus orbital period. We also show that planets following the trend where heavier hot Jupiters have shorter orbital periods (the “mass-period relation” of hot Jupiters), also tend to have circular orbits, with no confirmed exception to this rule so far.


2019 ◽  
Vol 489 (2) ◽  
pp. 2069-2078 ◽  
Author(s):  
Silvia Sabotta ◽  
Petr Kabath ◽  
Judith Korth ◽  
Eike W Guenther ◽  
Daniel Dupkala ◽  
...  

ABSTRACT Some theories of planet formation and evolution predict that intermediate-mass stars host more hot Jupiters than Sun-like stars, others reach the conclusion that such objects are very rare. By determining the frequencies of those planets we can test those theories. Based on the analysis of Kepler light curves it has been suggested that about 8 per cent of the intermediate-mass stars could have a close-in substellar companion. This would indicate a very high frequency of such objects. Up to now, there was no satisfactory proof or test of this hypothesis. We studied a previously reported sample of 166 planet candidates around main-sequence A-type stars in the Kepler field. We selected six of them for which we obtained extensive long-term radial velocity measurements with the Alfred Jensch 2-m telescope in Tautenburg and the Perek 2-m telescope in Ondřejov. We derive upper limits of the masses of the planet candidates. We show that we are able to detect this kind of planet with our telescopes and their instrumentation using the example of MASCARA-1 b. With the transit finding pipeline Extrans we confirm that there is no single transit event from a Jupiter-like planet in the light curves of those 166 stars. We furthermore determine that the upper limit for the occurrence rate of close-in, massive planets for A-type stars in the Kepler sample is around 0.75 per cent. We argue that there is currently little evidence for a very high frequency of close-in, massive planets of intermediate-mass stars.


2012 ◽  
Vol 8 (S293) ◽  
pp. 315-318
Author(s):  
Lisa Nortmann ◽  
Stefan Dreizler ◽  
Jacob Bean

AbstractIn response to the large number of exoplanet detections, the characterization of these planets has become a major focus of exoplanet science. Transiting planets are of particular interest as they allow us to investigate the transmission of their atmospheres. Our group uses ground-based facilities like the ESO/VLT to probe the atmosphere of hot Jupiters with the technique of spectrophotometry. In our preliminary results for the hot Jupiters WASP-17b and WASP-31b we find the reachable precision to be limited by instrumental systematic noise rather than photon noise. We discuss the source of the noise and suggest two approaches to correct it.


2010 ◽  
Vol 6 (S276) ◽  
pp. 129-134
Author(s):  
Andrew Collier Cameron

AbstractAs the number of known transiting planets from ground-based surveys passes the 100 mark, it is becoming possible to perform meaningful statistical analyses on their physical properties. Caution is needed in their interpretation, because subtle differences in survey strategy can lead to surprising selection effects affecting the distributions of planetary orbital periods and radii, and of host-star metallicity. Despite these difficulties, the planetary mass-radius relation appears to conform more or less to theoretical expectations in the mass range from Saturns to super-Jupiters. The inflated radii of many hot Jupiters indicate that environmental factors can have a dramatic effect on planetary structure, and may even lead to catastrophic loss of the planetary envelope under extreme irradiation. High-precision radial velocities and secondary-eclipse timing are yielding eccentricity measurements of exquisite precision. They show some hot Jupiters to be in almost perfectly circular orbits, while others remain slightly but significantly eccentric.


2017 ◽  
Vol 115 (2) ◽  
pp. 266-271 ◽  
Author(s):  
Subo Dong ◽  
Ji-Wei Xie ◽  
Ji-Lin Zhou ◽  
Zheng Zheng ◽  
Ali Luo

We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period (1d<P<10d)Kepler planets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more “puffed up” compared with that around metal-poor hosts. In two period–radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets (2R⊕≲Rp≲6R⊕), dubbed “Hoptunes.” Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About 1% of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a “valley” at approximately Saturn size (in the range of 6R⊕≲Rp≲10R⊕), and this “hot-Saturn valley” represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical “kinship” between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.


2019 ◽  
Vol 488 (2) ◽  
pp. 1695-1703 ◽  
Author(s):  
Jorge Cortés ◽  
David Kipping

ABSTRACT White dwarfs are one of the few types of stellar object for which we have yet to confirm the existence of companion planets. Recent evidence for metal contaminated atmospheres, circumstellar debris discs, and transiting planetary debris all indicates that planets may be likely. However, white dwarf transit surveys are challenging due to the intrinsic faintness of such objects, the short time-scale of the transits, and the low transit probabilities due to their compact radii. The Large Synoptic Survey Telescope (LSST) offers a remedy to these problems as a deep, half-sky survey with fast exposures encompassing approximately 10 million white dwarfs with r &lt; 24.5 apparent magnitude (mr). We simulate LSST photometric observations of 3.5 million white dwarfs over a 10 yr period and calculate the detectability of companion planets with P &lt; 10 d via transits. We find typical detection rates in the range of 5 × 10−6 to 4 × 10−4 for Ceres-sized bodies to Earth-sized worlds, yielding ∼50–$4000$ detections for a 100 per cent occurrence rate of each. For terrestrial planets in the continuously habitable zone, we find detection rates of ∼10−3 indicating that LSST would reveal hundreds of such worlds for occurrence rates in the range of 1–10 per cent.


2015 ◽  
Vol 799 (2) ◽  
pp. 229 ◽  
Author(s):  
Ji Wang ◽  
Debra A. Fischer ◽  
Elliott P. Horch ◽  
Xu Huang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document