systematic noise
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yan Wang ◽  
Yuhang Li ◽  
Ruihao Gong ◽  
Tianzi Xiao ◽  
Fengwei Yu
Keyword(s):  

2021 ◽  
Author(s):  
Dominique Petit dit de la Roche ◽  
Mario van den Ancker ◽  
Paulo Miles Páez

<p>Wasp-15 b is an inflated hot Jupiter orbiting a bright host star. Its low density and consequent large atmospheric scale height make it an excellent candidate for atmospheric characterization using transmission spectroscopy. In fact, it has previously been observed with the FORS2 spectrograph on the VLT, but large systematics have so far prevented this data from being used. Here, we show that Gaussian Process modelling can remove systematic noise features with amplitudes up to that of the transit signal, allowing us to achieve a precision comparable to later data without the systematics. We present the first transmission spectrum of the atmosphere of Wasp-15 b and compare it to theoretical spectra to discuss the implications.</p>


2021 ◽  
Vol 502 (3) ◽  
pp. 3966-3975
Author(s):  
Roman Krivonos ◽  
Daniel Wik ◽  
Brian Grefenstette ◽  
Kristin Madsen ◽  
Kerstin Perez ◽  
...  

ABSTRACT We present measurements of the intensity of the cosmic X-ray background (CXB) with the Nuclear Spectroscopic Telescope Array (NuSTAR) telescope in the 3–20 keV energy range. Our method uses spatial modulation of the CXB signal on the NuSTAR detectors through the telescope’s side aperture. Based on the NuSTAR observations of selected extragalactic fields with a total exposure of 7 Ms, we have estimated the CXB 3–20 keV flux to be 2.8 × 10−11 erg s−1 cm−2 deg−2, which is $\sim \! 8{{\ \rm per\ cent}}$ higher than that measured with HEAO-1 and consistent with the INTEGRAL measurement. The inferred CXB spectral shape in the 3–20 keV energy band is consistent with the canonical model of Gruber et al. We demonstrate that the spatially modulated CXB signal measured by NuSTAR is not contaminated by systematic noise and is limited by photon statistics. The measured relative scatter of the CXB intensity between different sky directions is compatible with cosmic variance, which opens new possibilities for studying CXB anisotropy over the whole sky with NuSTAR.


2020 ◽  
Vol 12 (18) ◽  
pp. 3001
Author(s):  
Boye Zhou ◽  
Christopher Watson ◽  
Benoit Legresy ◽  
Matt A. King ◽  
Jack Beardsley ◽  
...  

Global Navigation Satellite System (GNSS)-equipped buoys have a fundamental role in the validation of satellite altimetry. Requirements to validate next generation altimeter missions are demanding and call for a greater understanding of the systematic errors associated with the buoy approach. In this paper, we assess the present-day buoy precision using archived data from the Bass Strait validation facility. We explore potential improvements in buoy precision by addressing two previously ignored issues: changes to buoyancy as a function of external forcing, and biases induced by platform dynamics. Our results indicate the precision of our buoy against in situ mooring data is ~15 mm, with a ~8.5 mm systematic noise floor. Investigation into the tether tension effect on buoyancy showed strong correlation between currents, wind stress and buoy-against-mooring residuals. Our initial empirical correction achieved a reduction of 5 mm in the standard deviation of the residuals, with a 51% decrease in variance over low frequency bands. Corrections associated with platform orientation from an Inertial Navigation System (INS) unit showed centimetre-level magnitude and are expected to be higher under rougher sea states. Finally, we conclude with further possible improvements to meet validation requirements for the future Surface Water Ocean Topography (SWOT) mission.


2020 ◽  
Vol 641 ◽  
pp. A158 ◽  
Author(s):  
F. Murgas ◽  
G. Chen ◽  
L. Nortmann ◽  
E. Palle ◽  
G. Nowak

Context. One of the main atmospheric features in exoplanet atmospheres, detectable both from ground- and space-based facilities, is Rayleigh scattering. In hydrogen-dominated planetary atmospheres, Rayleigh scattering causes the measured planetary radius to increase toward blue wavelengths in the optical range. Aims. We aim to detect and improve our understanding of several features in the optical range observable in planetary atmospheres. We focus on studying transiting exoplanets that present a wide range of orbital periods, masses, radii, and irradiation from their host star. Methods. We obtained a spectrophotometric time series of one transit of the Saturn-mass planet WASP-69b using the OSIRIS instrument at the Gran Telescopio Canarias. From the data we constructed 19 spectroscopic transit light curves representing 20 nm wide wavelength bins spanning from 515 to 905 nm. We derived the transit depth for each curve individually by fitting an analytical model together with a Gaussian process to account for systematic noise in the light curves. Results. We find that the transit depth increases toward bluer wavelengths, indicative of a larger effective planet radius. Our results are consistent with space-based measurements obtained in the near infrared using the Hubble Space Telescope, which show a compatible slope of the transmission spectrum. We discuss the origin of the detected slope and argue between two possible scenarios: a Rayleigh scattering detection originating in the planet’s atmosphere or a stellar activity induced signal from the host star.


Microscopy ◽  
2020 ◽  
Author(s):  
Martin Hÿtch ◽  
Christophe Gatel

Abstract We investigate the effect that recording off-axis electron holograms on pixelated detectors, such as charge-coupled devices (CCD) and direct-detection devices (DDD), can have on measured amplitudes and phases. Theory will be developed for the case of perfectly uniform interference fringes illuminating an imperfect detector with gain variations and pixel displacements. We will show that both these types of defect produce a systematic noise in the phase images that depends on the position of the holographic fringes with respect to the detector. Subtracting a reference hologram from the object hologram will therefore not remove the phase noise if the initial phases of the two holograms do not coincide exactly. Another finding is that pi-shifted holograms are much less affected by gain variations but show no improvement concerning geometric distortions. The resulting phase errors will be estimated and simulations presented that confirm the theoretical developments.


2020 ◽  
Vol 159 (6) ◽  
pp. 283 ◽  
Author(s):  
Jamila S. Taaki ◽  
Farzad Kamalabadi ◽  
Athol J. Kemball

2019 ◽  
Vol 631 ◽  
pp. A129 ◽  
Author(s):  
S. Sulis ◽  
D. Dragomir ◽  
M. Lendl ◽  
V. Bourrier ◽  
B. O. Demory ◽  
...  

Context. 55 Cnc e is a transiting super-Earth orbiting a solar-like star with an orbital period of ~17.7 h. In 2011, using the Microvariability and Oscillations in Stars (MOST) space telescope, a quasi-sinusoidal modulation in flux was detected with the same period as the planetary orbit. The amplitude of this modulation was too large to be explained as the change in light reflected or emitted by the planet. Aims. The MOST telescope continued to observe 55 Cnc e for a few weeks per year over five years (from 2011 to 2015), covering 143 individual transits. This paper presents the analysis of the observed phase modulation throughout these observations and a search for the secondary eclipse of the planet. Methods. The most important source of systematic noise in MOST data is due to stray-light reflected from the Earth, which is modulated with both the orbital period of the satellite (101.4 min) and the Earth’s rotation period. We present a new technique to deal with this source of noise, which we combined with standard detrending procedures for MOST data. We then performed Markov chain Monte Carlo analyses of the detrended light curves, modeling the planetary transit and phase modulation. Results. We find phase modulations similar to those seen in 2011 in most of the subsequent years; however, the amplitude and phase of maximum light are seen to vary, from year to year, from 113 to 28 ppm and from 0.1 to 3.8 rad. The secondary eclipse is not detected, but we constrain the geometric albedo of the planet to less than 0.47 (2σ). Conclusions. While we cannot identify a single origin of the observed optical modulation, we propose a few possible scenarios. Those include star-planet interaction, such as coronal rains and spots rotating with the motion of the planet along its orbit, or the presence of a transiting circumstellar torus of dust. However, a detailed interpretation of these observations is limited by their photometric precision. Additional observations at optical wavelengths could measure the variations at higher precision, contribute to uncovering the underlying physical processes, and measure or improve the upper limit on the albedo of the planet.


Author(s):  
Shiv Shankar ◽  
Daniel Sheldon ◽  
Tao Sun ◽  
John Pickering ◽  
Thomas G. Dietterich

Many ecological studies and conservation policies are based on field observations of species, which can be affected by systematic variability introduced by the observation process. A recently introduced causal modeling technique called 'half-sibling regression' can detect and correct for systematic errors in measurements of multiple independent random variables. However, it will remove intrinsic variability if the variables are dependent, and therefore does not apply to many situations, including modeling of species counts that are controlled by common causes. We present a technique called 'three-quarter sibling regression' to partially overcome this limitation. It can filter the effect of systematic noise when the latent variables have observed common causes. We provide theoretical justification of this approach, demonstrate its effectiveness on synthetic data, and show that it reduces systematic detection variability due to moon brightness in moth surveys.


2018 ◽  
Vol 108 (8) ◽  
pp. 2366-2382 ◽  
Author(s):  
Ferdinand M. Vieider

In this comment on Callen et al. (2014), I revisit recent evidence uncovering a “preference for certainty” in violation of dominant normative and descriptive theories of decision-making under risk. I show that the empirical findings are potentially confounded by systematic noise. I then develop choice lists that allow me to disentangle these different explanations. Experimental results obtained with these lists reject explanations based on a preference for certainty in favor of explanations based on random choice. From a theoretical point of view, the levels of risk aversion detected in the choice list involving certainty can be accounted for by prospect theory through reference dependence activated by salient outcomes. (JEL C91, D12, D74, D81, O12, O17)


Sign in / Sign up

Export Citation Format

Share Document