scholarly journals X-RAY COUNTERPART OF GRAVITATIONAL WAVES DUE TO BINARY NEUTRON STAR MERGERS: LIGHT CURVES, LUMINOSITY FUNCTION, AND EVENT RATE DENSITY

2017 ◽  
Vol 835 (1) ◽  
pp. 7 ◽  
Author(s):  
Hui Sun ◽  
Bing Zhang ◽  
He Gao
2021 ◽  
Vol 502 (4) ◽  
pp. 4680-4688
Author(s):  
Ankan Sur ◽  
Brynmor Haskell

ABSTRACT In this paper, we study the spin-evolution and gravitational-wave luminosity of a newly born millisecond magnetar, formed either after the collapse of a massive star or after the merger of two neutron stars. In both cases, we consider the effect of fallback accretion; and consider the evolution of the system due to the different torques acting on the star, namely the spin-up torque due to accretion and spin-down torques due to magnetic dipole radiation, neutrino emission, and gravitational-wave emission linked to the formation of a ‘mountain’ on the accretion poles. Initially, the spin period is mostly affected by the dipole radiation, but at later times, accretion spin the star up rapidly. We find that a magnetar formed after the collapse of a massive star can accrete up to 1 M⊙, and survive on the order of 50 s before collapsing to a black hole. The gravitational-wave strain, for an object located at 1 Mpc, is hc ∼ 10−23 at kHz frequencies, making this a potential target for next-generation ground-based detectors. A magnetar formed after a binary neutron star merger, on the other hand, accretes at the most 0.2 M⊙ and emits gravitational waves with a lower maximum strain of the order of hc ∼ 10−24, but also survives for much longer times, and may possibly be associated with the X-ray plateau observed in the light curve of a number of short gamma-ray burst.


2021 ◽  
Vol 502 (1) ◽  
pp. L72-L78
Author(s):  
K Mohamed ◽  
E Sonbas ◽  
K S Dhuga ◽  
E Göğüş ◽  
A Tuncer ◽  
...  

ABSTRACT Similar to black hole X-ray binary transients, hysteresis-like state transitions are also seen in some neutron-star X-ray binaries. Using a method based on wavelets and light curves constructed from archival Rossi X-ray Timing Explorer observations, we extract a minimal timescale over the complete range of transitions for 4U 1608-52 during the 2002 and 2007 outbursts and the 1999 and 2000 outbursts for Aql X-1. We present evidence for a strong positive correlation between this minimal timescale and a similar timescale extracted from the corresponding power spectra of these sources.


2020 ◽  
Vol 501 (1) ◽  
pp. 168-178
Author(s):  
Chen Li ◽  
Guobao Zhang ◽  
Mariano Méndez ◽  
Jiancheng Wang ◽  
Ming Lyu

ABSTRACT We have found and analysed 16 multipeaked type-I bursts from the neutron-star low-mass X-ray binary 4U 1636 − 53 with the Rossi X-ray Timing Explorer (RXTE). One of the bursts is a rare quadruple-peaked burst that was not previously reported. All 16 bursts show a multipeaked structure not only in the X-ray light curves but also in the bolometric light curves. Most of the multipeaked bursts appear in observations during the transition from the hard to the soft state in the colour–colour diagram. We find an anticorrelation between the second peak flux and the separation time between two peaks. We also find that in the double-peaked bursts the peak-flux ratio and the temperature of the thermal component in the pre-burst spectra are correlated. This indicates that the double-peaked structure in the light curve of the bursts may be affected by enhanced accretion rate in the disc, or increased temperature of the neutron star.


2017 ◽  
Vol 96 (6) ◽  
Author(s):  
Francesco Maione ◽  
Roberto De Pietri ◽  
Alessandra Feo ◽  
Frank Löffler

2012 ◽  
Vol 29 (12) ◽  
pp. 124003 ◽  
Author(s):  
Kenta Kiuchi ◽  
Yuichiro Sekiguchi ◽  
Koutarou Kyutoku ◽  
Masaru Shibata

Physics ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 194-228 ◽  
Author(s):  
Houri Ziaeepour

Gravitational Waves (GW) from coalescence of a Binary Neutron Star (BNS) and its accompanying short Gamma-Ray Burst (GRB) GW/GRB 170817A confirmed the presumed origin of these puzzling transients and opened up the way for relating properties of short GRBs to those of their progenitor stars and their surroundings. Here we review an extensive analysis of the prompt gamma-ray and late afterglows of this event. We show that a fraction of polar ejecta from the merger had been accelerated to ultra-relativistic speeds. This structured jet had an initial Lorentz factor of about 260 in our direction, which was O ( 10 ∘ ) from the jet’s axis, and was a few orders of magnitude less dense than in typical short GRBs. At the time of arrival to circum-burst material the ultra-relativistic jet had a close to Gaussian profile and a Lorentz factor ≳ 130 in its core. It had retained in some extent its internal collimation and coherence, but had extended laterally to create mildly relativistic lobes—a cocoon. Its external shocks on the far from center inhomogeneous circum-burst material and low density of colliding shells generated slowly rising afterglows, which peaked more than 100 days after the prompt gamma-ray. The circum-burst material was somehow correlated with the merger. As non-relativistic outflows or tidally ejected material during BNS merger could not have been arrived to the location of the external shocks before the relativistic jet, circum-burst material might have contained recently ejected materials from resumption of internal activities, faulting and mass loss due to deformation and breaking of stars crusts by tidal forces during latest stages of their inspiral but well before their merger. By comparing these findings with the results of relativistic Magneto-Hydro-Dynamics (MHD) simulations and observed gravitational waves we conclude that progenitor neutron stars were most probably old, had close masses and highly reduced magnetic fields.


Author(s):  
E Troja ◽  
H van Eerten ◽  
G Ryan ◽  
R Ricci ◽  
J M Burgess ◽  
...  

Abstract We present the results of our year-long afterglow monitoring of GW170817, the first binary neutron star (NS) merger detected by advanced LIGO and advanced Virgo. New observations with the Australian Telescope Compact Array (ATCA) and the Chandra X-ray Telescope were used to constrain its late-time behavior. The broadband emission, from radio to X-rays, is well-described by a simple power-law spectrum with index β ∼0.585 at all epochs. After an initial shallow rise ∝ t0.9, the afterglow displayed a smooth turn-over, reaching a peak X-ray luminosity of LX≈5 ×1039 erg s−1 at 160 d, and has now entered a phase of rapid decline, approximately ∝ t−2. The latest temporal trend challenges most models of choked jet/cocoon systems, and is instead consistent with the emergence of a relativistic structured jet seen at an angle of ≈22○ from its axis. Within such model, the properties of the explosion (such as its blastwave energy EK ≈ 2 × 1050 erg, jet width θc ≈4○, and ambient density n ≈3 × 10−3 cm−3) fit well within the range of properties of cosmological short GRBs.


1991 ◽  
Vol 9 (2) ◽  
pp. 279-280
Author(s):  
J. Singh ◽  
P. C. Agrawal ◽  
M. V. K. Apparao ◽  
R. K. Manchanda ◽  
P. Vivekananda Rao ◽  
...  

AbstractFast photometric observations of a nova-like variable KR Aurigae and the intermediate polar BG CMi (3A0729+103) were made in the B and U bands during 1984–89 to study pulsations in them. The light curves of KR Aur show large amplitude quasi-periodic pulsations with periods in the range 500–800s which can be ascribed to inhomogeneities in the accretion disc. The light curves of the X-ray emitting intermediate polar BG CMi show variable amplitude pulsations with 913s period. From the times of maxima of the pulsations obtained from observations over the period 1984–1989, the pulsation period is derived to be 0.010572966 ± 8 days and the spin-up rate to be (−5.7 ± 0.5) × 10−11 ss−1. The spin-up rate is consistent with the pulsating source being a white dwarf and not a neutron star.


Sign in / Sign up

Export Citation Format

Share Document