scholarly journals Habitable Moist Atmospheres on Terrestrial Planets near the Inner Edge of the Habitable Zone around M Dwarfs

2017 ◽  
Vol 845 (1) ◽  
pp. 5 ◽  
Author(s):  
Ravi kumar Kopparapu ◽  
Eric T. Wolf ◽  
Giada Arney ◽  
Natasha E. Batalha ◽  
Jacob Haqq-Misra ◽  
...  
2020 ◽  
Vol 643 ◽  
pp. A37
Author(s):  
Mingyu Yan ◽  
Jun Yang

Aims. In this work, we study the presence of hurricanes on exoplanets. Tidally locked terrestrial planets around M dwarfs are the main targets of space missions looking to discover habitable exoplanets. The question of whether hurricanes can form on this kind of planet is important for determining their climate and habitability. Methods. Using a high-resolution global atmospheric circulation model, we investigated whether there are hurricanes on tidally locked terrestrial planets under fixed surface temperatures (TS). The relevant effects of the planetary rotation rate, surface temperature, and bulk atmospheric compositions were examined. Results. We find that hurricanes can form on the planets but not on all of them. For planets near the inner edge of the habitable zone of late M dwarfs, there are more numerous and stronger hurricanes on both day and night sides. For planets in the middle and outer ranges of the habitable zone, the possibility of hurricane formation is low or even close to zero, as has been suggested in recent studies. Earth-based hurricane theories are applicable to tidally locked planets only when the atmospheric compositions are similar to that of Earth. However, if the background atmosphere is lighter than H2O, hurricanes can hardly be produced because convection is always inhibited due to the effect of the mean molecular weight, similarly to the case of Saturn. These results have broad implications on the precipitation, ocean mixing, climate, and atmospheric characterization of tidally locked planets. Finally, A test with a coupled slab ocean and an Earth-like atmosphere in a tide-locked orbit of ten Earth days demonstrates that there are also hurricanes present in the experiment.


2008 ◽  
Vol 4 (S253) ◽  
pp. 346-349
Author(s):  
Cullen H. Blake ◽  
David Charbonneau ◽  
David W. Latham

AbstractOwing to their small masses and radii, Ultracool Dwarfs (UCDs; late-M, L, and T dwarfs) may be excellent targets for planet searches and may afford astronomers the opportunity to detect terrestrial planets in the habitable zone. The precise measurements necessary to detect extrasolar planets orbiting UCDs represent a major challenge. We describe two efforts to obtain precise measurements of UCDs in the Near Infrared (NIR). The first involves the robotic NIR observatory PAIRITEL and efforts to obtain photometric precision sufficient for the detection of terrestrial planets transiting UCDs. The second effort involves precise radial velocity measurements of UCDs in the NIR and a survey undertaken with the NIRSPEC spectrograph on Keck.


2019 ◽  
Vol 871 (1) ◽  
pp. 29 ◽  
Author(s):  
Jun Yang ◽  
Dorian S. Abbot ◽  
Daniel D. B. Koll ◽  
Yongyun Hu ◽  
Adam P. Showman

2012 ◽  
Vol 8 (S293) ◽  
pp. 201-203
Author(s):  
Masashi Omiya ◽  
Bun'ei Sato ◽  
Hiroki Harakawa ◽  
Masayuki Kuzuhara ◽  
Teruyuki Hirano ◽  
...  

AbstractWe have a plan to conduct a Doppler planet search for low-mass planets around nearby middle-to-late M dwarfs using IRD. IRD is the near-infrared high-precision radial velocity instrument for the Subaru 8.2-m telescope. We expect to achieve the accuracy of the radial velocity measurements of 1 m/s using IRD with a frequency comb as a wavelengh calibrator. Thus, we would detect super-Earths in habitable zone and low-mass rocky planets in close-in orbits around late-M dwarfs. In this survey, we aim to understand and discuss statistical properties of low-mass planets around low-mass M dwarfs compared with those derived from theoretical simulations.


2007 ◽  
Vol 3 (S249) ◽  
pp. 305-308
Author(s):  
Masahiro Ogihara ◽  
Shigeru Ida

AbstractWe have investigated accretion of terrestrial planets from planetesimals around M dwarfs through N-body simulations including the effect of tidal interaction with disk gas. Because of low luminosity of M dwarfs, habitable zones around them are located near the disk inner edge. Planetary embryos undergo type-I migration and pile up near the disk inner edge. We found that after repeated close scatterings and occasional collisions, three or four planets eventually remain in stable orbits in their mean motion resonances. Furthermore, large amount of water-rich planetesimals rapidly migrate to the terrestrial planet regions from outside of the snow line, so that formed planets in these regions have much more water contents than those around solar-type stars.


2012 ◽  
Vol 8 (S293) ◽  
pp. 238-240
Author(s):  
Jianghui Ji ◽  
Sheng Jin

AbstractWe extensively investigate the terrestrial planetary formation for the inclined planetary systems (considering the OGLE-2006-BLG-109L system as example) in the late stage. In the simulations, we show that the occurrence of terrestrial planets appears to be common in the final assembly stage. Moreover, we find that a lot of runs finally occupy at least one planet in the habitable zone (HZ). On the other hand, the numerical results also indicate that the inner region of the planetesimal disk, ranging from ~ 0.1 to 0.3 AU, plays an important role in building up terrestrial planets. The outcomes suggest that it may exist moderate possibility for the inclined systems to harbor terrestrial planets in the HZ.


Author(s):  
P. J. Amado ◽  
F. F. Bauer ◽  
C. Rodriguez-Lopez ◽  
E. Rodriguez ◽  
C. Cardona Guillen ◽  
...  

2020 ◽  
Vol 897 (2) ◽  
pp. 125
Author(s):  
Paul Robertson ◽  
Gudmundur Stefansson ◽  
Suvrath Mahadevan ◽  
Michael Endl ◽  
William D. Cochran ◽  
...  
Keyword(s):  

2019 ◽  
Vol 632 ◽  
pp. A14 ◽  
Author(s):  
A. Dugaro ◽  
G. C. de Elía ◽  
L. A. Darriba

Aims. The goal of this research is to study how the fragmentation of planetary embryos can affect the physical and dynamical properties of terrestrial planets around solar-type stars. Our study focuses on the formation and evolution of planets and water delivery in the habitable zone (HZ). We distinguish class A and class B HZ planets, which have an accretion seed initially located inside and beyond the snow line, respectively. Methods. We developed an N-body integrator that incorporates fragmentation and hit-and-run collisions, which is called D3 N-body code. From this, we performed 46 numerical simulations of planetary accretion in systems that host two gaseous giants similar to Jupiter and Saturn. We compared two sets of 23 N-body simulations, one of which includes a realistic collisional treatment and the other one models all impacts as perfect mergers. Results. The final masses of the HZ planets formed in runs with fragmentation are about 15–20% lower than those obtained without fragmentation. As for the class A HZ planets, those formed in simulations without fragmentation experience very significant increases in mass with respect to their initial values, while the growth of those produced in runs with fragmentation is less relevant. We remark that the fragments play a secondary role in the masses of the class A HZ planets, providing less than 30% of their final values. In runs without fragmentation, the final fraction of water of the class A HZ planets keeps the initial value since they do not accrete water-rich embryos. In runs with fragmentation, the final fraction of water of such planets strongly depends on the model used to distribute the water after each collision. The class B HZ planets do not show significant differences concerning their final water contents in runs with and without fragmentation. From this, we find that the collisional fragmentation is not a barrier to the survival of water worlds in the HZ.


Sign in / Sign up

Export Citation Format

Share Document