scholarly journals Monte Carlo Population Synthesis on Massive Star Binaries: Astrophysical Implications for Gravitational-wave Sources

2018 ◽  
Vol 866 (2) ◽  
pp. 151 ◽  
Author(s):  
Iminhaji Ablimit ◽  
Keiichi Maeda
2021 ◽  
Vol 502 (4) ◽  
pp. 4680-4688
Author(s):  
Ankan Sur ◽  
Brynmor Haskell

ABSTRACT In this paper, we study the spin-evolution and gravitational-wave luminosity of a newly born millisecond magnetar, formed either after the collapse of a massive star or after the merger of two neutron stars. In both cases, we consider the effect of fallback accretion; and consider the evolution of the system due to the different torques acting on the star, namely the spin-up torque due to accretion and spin-down torques due to magnetic dipole radiation, neutrino emission, and gravitational-wave emission linked to the formation of a ‘mountain’ on the accretion poles. Initially, the spin period is mostly affected by the dipole radiation, but at later times, accretion spin the star up rapidly. We find that a magnetar formed after the collapse of a massive star can accrete up to 1 M⊙, and survive on the order of 50 s before collapsing to a black hole. The gravitational-wave strain, for an object located at 1 Mpc, is hc ∼ 10−23 at kHz frequencies, making this a potential target for next-generation ground-based detectors. A magnetar formed after a binary neutron star merger, on the other hand, accretes at the most 0.2 M⊙ and emits gravitational waves with a lower maximum strain of the order of hc ∼ 10−24, but also survives for much longer times, and may possibly be associated with the X-ray plateau observed in the light curve of a number of short gamma-ray burst.


2021 ◽  
Vol 5 (11) ◽  
pp. 275
Author(s):  
Adrian S. Hamers

Abstract I present a numerical fit to the peak harmonic gravitational wave frequency emitted by an eccentric binary system in the post-Newtonian approximation. This fit significantly improves upon a previous commonly-used fit in population synthesis studies, in particular for eccentricities ≲0.8.


2020 ◽  
Vol 497 (2) ◽  
pp. 2201-2212 ◽  
Author(s):  
E R Stanway ◽  
J J Eldridge ◽  
A A Chrimes

ABSTRACT The binary fraction of a stellar population can have pronounced effects on its properties, and, in particular, the number counts of different massive star types, and the relative subtype rates of the supernovae (SNe) that end their lives. Here we use binary population synthesis models with a binary fraction that varies with initial mass to test the effects on resolved stellar pops and SNe, and ask whether these can constrain the poorly-known binary fraction in different mass and metallicity regimes. We show that Wolf–Rayet (WR) star subtype ratios are valuable binary diagnostics, but require large samples to distinguish by models. Uncertainties in which stellar models would be spectroscopically classified as WR stars are explored. The ratio of thermonuclear, stripped-envelope, and other core-collapse SNe may prove a more accessible test and upcoming surveys will be sufficient to constrain both the high- and low-mass binary fraction in the z < 1 galaxy population.


2009 ◽  
Vol 5 (S262) ◽  
pp. 89-92 ◽  
Author(s):  
Stefano Zibetti ◽  
Stéphane Charlot ◽  
Hans-Walter Rix

AbstractWe report on the method developed by Zibetti, Charlot & Rix (2009) to construct resolved stellar mass maps of galaxies from optical and NIR imaging. Accurate pixel-by-pixel colour information (specifically g – i and i – H) is converted into stellar mass-to-light ratios with typical accuracy of 30%, based on median likelihoods derived from a Monte Carlo library of 50,000 stellar population synthesis models that include dust and updated TP-AGB phase prescriptions. Hence, surface mass densities are computed. In a pilot study, we analyze 9 galaxies spanning a broad range of morphologies. Among the main results, we find that: i) galaxies appear much smoother in stellar mass maps than at any optical or NIR wavelength; ii) total stellar mass estimates based on unresolved photometry are biased low with respect to the integral of resolved stellar mass maps, by up to 40%, due to dust obscured regions being under-represented in global colours; iii) within a galaxy, on local scales colours correlate with surface stellar mass density; iv) the slope and tightness of this correlation reflect/depend on the morphology of the galaxy.


2010 ◽  
Vol 27 (11) ◽  
pp. 114009 ◽  
Author(s):  
V Raymond ◽  
M V van der Sluys ◽  
I Mandel ◽  
V Kalogera ◽  
C Röver ◽  
...  

2020 ◽  
Vol 639 ◽  
pp. A123 ◽  
Author(s):  
Matthias U. Kruckow

Aims. I aim to explain the mass discrepancy between the observed double neutron-star binary population by radio pulsar observations and gravitational-wave observation. Methods. I performed binary population synthesis calculations and compared their results with the radio and the gravitational-wave observations simultaneously. Results. Simulations of binary evolution were used to link different observations of double neutron star binaries with each other. I investigated the progenitor of GW190425 in more detail. A distribution of masses and merger times of the possible progenitors is presented. Conclusions. A mass discrepancy between the radio pulsars in the Milky Way with another neutron star companion and the inferred masses from gravitational-wave observations of those kind of merging systems is naturally found in binary evolution.


2019 ◽  
Vol 488 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Fabian Gittins ◽  
Nils Andersson

ABSTRACT The fastest-spinning neutron stars in low-mass X-ray binaries, despite having undergone millions of years of accretion, have been observed to spin well below the Keplerian break-up frequency. We simulate the spin evolution of synthetic populations of accreting neutron stars in order to assess whether gravitational waves can explain this behaviour and provide the distribution of spins that is observed. We model both persistent and transient accretion and consider two gravitational-wave-production mechanisms that could be present in these systems: thermal mountains and unstable rmodes. We consider the case of no gravitational-wave emission and observe that this does not match well with observation. We find evidence for gravitational waves being able to provide the observed spin distribution; the most promising mechanisms being a permanent quadrupole, thermal mountains, and unstable r modes. However, based on the resultant distributions alone, it is difficult to distinguish between the competing mechanisms.


Sign in / Sign up

Export Citation Format

Share Document