scholarly journals The Extended Flare in CTA 102 in 2016 and 2017 within a Hadronic Model through Cloud Ablation by the Relativistic Jet

2019 ◽  
Vol 871 (1) ◽  
pp. 19 ◽  
Author(s):  
M. Zacharias ◽  
M. Böttcher ◽  
F. Jankowsky ◽  
J.-P. Lenain ◽  
S. J. Wagner ◽  
...  
1996 ◽  
Vol 175 ◽  
pp. 47-48
Author(s):  
A. Sillanpää ◽  
L. Takalo ◽  
K. Nilsson ◽  
T. Pursimo ◽  
P. Teerikorpi ◽  
...  

A widely accepted model for BL Lac objects is that they are radio galaxies with a relativistic jet pointing almost directly towards us. But we need a clear trigger mechanism for these jets. One possibility is the close interaction between the BL Lac host and the closeby galaxies (e.g. Heckman et al. 1986). This interaction has been seen many times in the case of quasars (Hutchings et al. 1989) but not so much is known about the close surroundings of the BL Lac objects although there has been some pioneer work like Stickel et al. (1993). The problem has usually been that the images are not deep enough and that the seeing has not been so good. To clarify the situation we have started an observing program to get very deep images in the sub-arcsecond seeing conditions from the whole 1 Jy sample (Stickel et al. 1991) of BL Lac objects. The aims of this study are: 1. to search for very close companions to the BL Lacs, 2. to study the large scale galaxy clustering around the BL Lacs and 3. to study the BL Lac hosts themselves.


2005 ◽  
Vol 14 (02) ◽  
pp. 309-321 ◽  
Author(s):  
MAXIM DVORNIKOV ◽  
ALEXANDER GRIGORIEV ◽  
ALEXANDER STUDENIKIN

We develop the quasiclassical theory of a massive neutrino spin evolution in the presence of gravitational fields, and the corresponding probability of the neutrino spin oscillations in gravitational fields is derived for the first time. On this basis we also predict a new mechanism for electromagnetic radiation by a neutrino moving in the vicinity of gravitating objects (the "spin light of neutrino," SLν, in gravitational fields). It is shown that the total power of this radiation is proportional to the neutrino gamma factor to the fourth power, and the emitted photon energy, for the case of an ultra relativistic neutrino, spans up to gamma-rays. We investigate the SLν caused by both gravitational and electromagnetic fields, also accounting for effects of arbitrary moving and polarized matter, in various astrophysical environments. In particular, we discuss the SLν emitted by a neutrino moving in the vicinity of a rotating neutron star, black hole surrounded by dense matter, as well as by a neutrino propagating in the relativistic jet from a quasar.


2018 ◽  
Vol 614 ◽  
pp. L1 ◽  
Author(s):  
A. Lähteenmäki ◽  
E. Järvelä ◽  
V. Ramakrishnan ◽  
M. Tornikoski ◽  
J. Tammi ◽  
...  

We have detected six narrow-line Seyfert 1 (NLS1) galaxies at 37 GHz that were previously classified as radio silent and two that were classified as radio quiet. These detections reveal the presumption that NLS1 galaxies labelled radio quiet or radio silent and hosted by spiral galaxies are unable to launch jets to be incorrect. The detections are a plausible indicator of the presence of a powerful, most likely relativistic jet because this intensity of emission at 37 GHz cannot be explained by, for example, radiation from supernova remnants. Additionally, one of the detected NLS1 galaxies is a newly discovered source of gamma rays and three others are candidates for future detections.


2002 ◽  
Vol 19 (10) ◽  
pp. 1432-1435 ◽  
Author(s):  
Guo Hua ◽  
Zhou Ran ◽  
Liu Yu-Xin

1995 ◽  
Vol 51 (5) ◽  
pp. 2360-2371 ◽  
Author(s):  
V. Mull ◽  
K. Holinde
Keyword(s):  

2014 ◽  
Vol 10 (S313) ◽  
pp. 329-330
Author(s):  
A. Olguín-Iglesias ◽  
J. León-Tavares ◽  
V. Chavushyan ◽  
E. Valtaoja ◽  
C. Añorve ◽  
...  

AbstractWe explore the connection between the black hole mass and its relativistic jet for a sample of radio-loud AGN (z < 1), in which the relativistic jet parameters are well estimated by means of long term monitoring with the 14m Metsähovi millimeter wave telescope and the Very Long Base-line Array (VLBA). NIR host galaxy images taken with the NOTCam on the Nordic Optical Telescope (NOT) and retrieved from the 2MASS all-sky survey allowed us to perform a detailed surface brightness decomposition of the host galaxies in our sample and to estimate reliable black hole masses via their bulge luminosities. We present early results on the correlations between black hole mass and the relativistic jet parameters. Our preliminary results suggest that the more massive the black hole is, the faster and the more luminous jet it produces.


2020 ◽  
Vol 640 ◽  
pp. A37 ◽  
Author(s):  
A. Ignesti ◽  
G. Brunetti ◽  
M. Gitti ◽  
S. Giacintucci

Context. A large fraction of cool-core clusters are known to host diffuse, steep-spectrum radio sources, called radio mini-halos, in their cores. Mini-halos reveal the presence of relativistic particles on scales of hundreds of kiloparsecs, beyond the scales directly influenced by the central active galactic nucleus (AGN), but the nature of the mechanism that produces such a population of radio-emitting, relativistic electrons is still debated. It is also unclear to what extent the AGN plays a role in the formation of mini-halos by providing the seeds of the relativistic population. Aims. In this work we explore the connection between thermal and non-thermal components of the intra-cluster medium in a sample of radio mini-halos and we study the implications within the framework of a hadronic model for the origin of the emitting electrons. Methods. For the first time, we studied the thermal and non-thermal connection by carrying out a point-to-point comparison of the radio and the X-ray surface brightness in a sample of radio mini-halos. We extended the method generally applied to giant radio halos by considering the effects of a grid randomly generated through a Monte Carlo chain. Then we used the radio and X-ray correlation to constrain the physical parameters of a hadronic model and we compared the model predictions with current observations. Results. Contrary to what is generally reported in the literature for giant radio halos, we find that the mini-halos in our sample have super-linear scaling between radio and X-rays, which suggests a peaked distribution of relativistic electrons and magnetic field. We explore the consequences of our findings on models of mini-halos. We use the four mini-halos in the sample that have a roundish brightness distribution to constrain model parameters in the case of a hadronic origin of the mini-halos. Specifically, we focus on a model where cosmic rays are injected by the central AGN and they generate secondaries in the intra-cluster medium, and we assume that the role of turbulent re-acceleration is negligible. This simple model allows us to constrain the AGN cosmic ray luminosity in the range ∼1044−46 erg s−1 and the central magnetic field in the range 10–40 μG. The resulting γ-ray fluxes calculated assuming these model parameters do not violate the upper limits on γ-ray diffuse emission set by the Fermi-LAT telescope. Further studies are now required to explore the consistency of these large magnetic fields with Faraday rotation studies and to study the interplay between the secondary electrons and the intra-cluster medium turbulence.


Author(s):  
Ailing Wang ◽  
Tao An ◽  
Sumit Jaiswal ◽  
Prashanth Mohan ◽  
Yuchan Wang ◽  
...  

Abstract Mrk 231 is the closest radio-quiet quasar known and one of the most luminous infrared galaxies in the local Universe. It is characterised by the co-existence of a radio jet and powerful multi-phase multi-scale outflows, making it an ideal laboratory to study active galactic nucleus (AGN) feedback. We analyse the multi-epoch very long baseline interferometry data of Mrk 231 and estimate the jet head advance speed to be ≲ 0.013 c, suggesting a sub-relativistic jet flow. The jet position angle changes from −113○ in the inner parsec to −172○ at a projected distance of 25 parsec. The jet structure change might result from either a jet bending following the rotation of the circum-nuclear disc or the projection of a helical jet on the plane of the sky. In the large opening angle (∼60○) cone, the curved jet interacts with the interstellar medium and creates wide-aperture-angle shocks which subsequently dissipate a large portion of the jet power through radiation and contribute to powering the large-scale outflows. The low power and bent structure of the Mrk 231 jet, as well as extensive radiation dissipation, are consistent with the obstruction of the short-length jet by the host galaxy’s environment.


Sign in / Sign up

Export Citation Format

Share Document