scholarly journals On the Prospect of Using the Maximum Circular Velocity of Halos to Encapsulate Assembly Bias in the Galaxy–Halo Connection

2019 ◽  
Vol 887 (1) ◽  
pp. 17 ◽  
Author(s):  
Idit Zehavi ◽  
Stephen E. Kerby ◽  
Sergio Contreras ◽  
Esteban Jiménez ◽  
Nelson Padilla ◽  
...  
2018 ◽  
Vol 482 (4) ◽  
pp. 4824-4845 ◽  
Author(s):  
Johannes U Lange ◽  
Frank C van den Bosch ◽  
Andrew R Zentner ◽  
Kuan Wang ◽  
Antonio S Villarreal
Keyword(s):  

2018 ◽  
Vol 616 ◽  
pp. L9 ◽  
Author(s):  
G. Monari ◽  
B. Famaey ◽  
I. Carrillo ◽  
T. Piffl ◽  
M. Steinmetz ◽  
...  

We measure the escape speed curve of the Milky Way based on the analysis of the velocity distribution of ~2850 counter-rotating halo stars from the Gaia Data Release 2. The distances were estimated through the StarHorse code, and only stars with distance errors smaller than 10% were used in the study. The escape speed curve is measured at Galactocentric radii ranging from ~5 kpc to ~10.5 kpc. The local Galactic escape at the Sun’s position is estimated to be ve(r⊙) = 580 ± 63 km s−1, and it rises towards the Galactic centre. Defined as the minimum speed required to reach three virial radii, our estimate of the escape speed as a function of radius implies for a Navarro–Frenk–White profile and local circular velocity of 240 km s−1 a dark matter mass M200 = 1.28−0.50+0.68 × 1012 M⊙ and a high concentration c200 = 11.09−1.79+2.94. Assuming the mass-concentration relation of ΛCDM, we obtain M200 = 1.55−0.51+0.64 × 1012 M⊙ and c200 = 7.93−0.27+0.33 for a local circular velocity of 228 km s−1.


2019 ◽  
Vol 871 (2) ◽  
pp. L21 ◽  
Author(s):  
Robert Feldmann ◽  
Claude-André Faucher-Giguère ◽  
Dušan Kereš
Keyword(s):  
Low Mass ◽  

2008 ◽  
Vol 4 (S254) ◽  
pp. 283-288
Author(s):  
Daniel Christlein ◽  
Joss Bland-Hawthorn

AbstractWarps in the outer gaseous disks of galaxies are a ubiquitous phenomenon, but it is still unclear what generates them. One theory is that warps are generated internally through spontaneous bending instabilities. Other theories suggest that they result from the interaction of the outer disk with accreting extragalactic material. In this case, we expect to find cases where the circular velocity of the warp gas is poorly correlated with the rotational velocity of the galaxy disk at the same radius. Optical spectroscopy presents itself as an interesting alternative to 21-cm observations for testing this prediction, because (i) separating the kinematics of the warp from those of the disk requires a spatial resolution that is higher than what is achieved at 21 cm at low HI column density; (ii) optical spectroscopy also provides important information on star formation rates, gas excitation, and chemical abundances, which provide clues to the origin of the gas in warps. We present here preliminary results of a study of the kinematics of gas in the outer-disk warps of seven edge-on galaxies, using multi-hour VLT/FORS2 spectroscopy.


2019 ◽  
Vol 488 (1) ◽  
pp. 782-802 ◽  
Author(s):  
N Chandrachani Devi ◽  
Aldo Rodríguez-Puebla ◽  
O Valenzuela ◽  
Vladimir Avila-Reese ◽  
César Hernández-Aguayo ◽  
...  

Abstract We investigate the dependence of the galaxy–halo connection and galaxy density field in modified gravity models using the N-body simulations for f(R) and nDGP models at z = 0. Because of the screening mechanisms employed by these models, chameleon and Vainshtein, haloes are clustered differently in the non-linear regime of structure formation. We quantify their deviations in the galaxy density field from the standard Λ cold dark matter (ΛCDM) model under different environments. We populate galaxies in haloes via the (sub)halo abundance matching. Our main results are as follows: (1) The galaxy–halo connection strongly depends on the gravity model; a maximum variation of ${\sim }40{{\ \rm per\ cent}}$ is observed between halo occupational distribution (HOD) parameters; (2) f(R) gravity models predict an excess of galaxies in low-density environments of ${\sim }10{{\ \rm per\ cent}}$ but predict a deficit of ${\sim }10{{\ \rm per\ cent}}$ at high-density environments for |fR0| = 10−4 and 10−6 while |fR0| = 10−5 predicts more high-density structures; nDGP models are consistent with ΛCDM; (3) different gravity models predict different dependences of the galaxy luminosity function (GLF) with the environment, especially in void-like regions we find differences around ${\sim }10{{\ \rm per\ cent}}$ for the f(R) models while nDPG models remain closer to ΛCDM for low-luminosity galaxies but there is a deficit of ${\sim }11{{\ \rm per\ cent}}$ for high-luminosity galaxies in all environments. We conclude that the dependence of the GLF with environment might provide a test to distinguish between gravity models and their screening mechanisms from the ΛCDM. We provide HOD parameters for the gravity models analysed in this paper.


2020 ◽  
Vol 495 (3) ◽  
pp. 3002-3013 ◽  
Author(s):  
Alexander Knebe ◽  
Matías Gámez-Marín ◽  
Frazer R Pearce ◽  
Weiguang Cui ◽  
Kai Hoffmann ◽  
...  

ABSTRACT Using 324 numerically modelled galaxy clusters, we investigate the radial and galaxy–halo alignment of dark matter subhaloes and satellite galaxies orbiting within and around them. We find that radial alignment depends on distance to the centre of the galaxy cluster but appears independent of the dynamical state of the central host cluster. Furthermore, we cannot find a relation between radial alignment of the halo or galaxy shape with its own mass. We report that backsplash galaxies, i.e. objects that have already passed through the cluster radius but are now located in the outskirts, show a stronger radial alignment than infalling objects. We further find that there exists a population of well radially aligned objects passing very close to the central cluster’s centre that were found to be on highly radial orbit.


2015 ◽  
Vol 454 (2) ◽  
pp. 1432-1452 ◽  
Author(s):  
Tim Schrabback ◽  
Stefan Hilbert ◽  
Henk Hoekstra ◽  
Patrick Simon ◽  
Edo van Uitert ◽  
...  
Keyword(s):  

2016 ◽  
Vol 834 (1) ◽  
pp. 37 ◽  
Author(s):  
Benjamin V. Lehmann ◽  
Yao-Yuan Mao ◽  
Matthew R. Becker ◽  
Samuel W. Skillman ◽  
Risa H. Wechsler

2011 ◽  
Vol 20 (10) ◽  
pp. 1771-1777
Author(s):  
HOUJUN MO

Given that dark matter is gravitationally dominant in the universe, and that galaxy formation is closely related to dark matter halos, a key first step in understanding galaxy formation and evolution in the CDM paradigm is to quantify the galaxy-halo connection for galaxies of different properties. Here I will present results about the halo/galaxy connection obtained from two different methods. One is based on the conditional luminosity function, which describes the occupation of galaxies in halos of different masses, and the other is based on galaxy systems properly selected to represent dark halos.


Sign in / Sign up

Export Citation Format

Share Document