scholarly journals Tracing the Dynamical Mass in Galaxy Disks Using H i Velocity Dispersion and Its Implications for the Dark Matter Distribution in Galaxies

2020 ◽  
Vol 889 (1) ◽  
pp. 10 ◽  
Author(s):  
Mousumi Das ◽  
Stacy S. McGaugh ◽  
Roger Ianjamasimanana ◽  
James Schombert ◽  
K. S. Dwarakanath
2020 ◽  
Vol 498 (1) ◽  
pp. 1080-1092
Author(s):  
Rain Kipper ◽  
María Benito ◽  
Peeter Tenjes ◽  
Elmo Tempel ◽  
Roberto de Propris

ABSTRACT A galaxy moving through a background of dark matter particles induces an overdensity of these particles or a wake behind it. The back reaction of this wake on the galaxy is a force field that can be decomposed into an effective deceleration (called dynamical friction) and a tidal field. In this paper, we determine the tidal forces, thus generated on the galaxy, and the resulting observables, which are shown to be warps, lopsidedness, and/or kinematic-photometric position angle misalignments. We estimate the magnitude of the tidal-like effects needed to reproduce the observed warp and lopsidedness on the isolated galaxy IC 2487. Within a realistic range of dark matter distribution properties, the observed, warped, and lopsided kinematical properties of IC 2487 are possible to reproduce (the background medium of dark matter particles has a velocity dispersion of $\lesssim 80\, {\rm km\, s^{-1}}$ and the density $10^4{\!-\!}10^5\, {\rm M_\odot \, kpc^{-3}}$, more likely at the lower end). We conclude that the proposed mechanism can generate warps, lopsidedness, and misalignments observed in isolated galaxies or galaxies in loose groups. The method can be used also to constrain dark matter spatial and velocity distribution properties.


2019 ◽  
Vol 14 (S353) ◽  
pp. 239-245
Author(s):  
Ewa L. Łokas

AbstractI review the current status of dynamical modelling of dwarf spheroidal galaxies focusing on estimates of their dark matter content. Starting with the simplest methods using the velocity dispersion profiles I discuss the inherent issues of mass-anisotropy degeneracy and contamination by unbound stars. I then move on to methods of increasing complexity, aiming to break the degeneracy, up to recent applications of the Schwarzschild orbit superposition method. The dynamical modelling is placed in the context of possible scenarios for the formation of dwarf spheroidal galaxies, including the tidal stirring model and mergers of dwarf galaxies. The two scenarios are illustrated with examples from simulations: a comparison between the tidal evolution of dwarfs with cuspy and cored dark matter profiles and the formation of a dwarf spheroidal with prolate rotation.


2022 ◽  
Vol 924 (2) ◽  
pp. 77
Author(s):  
Raymond G. Carlberg ◽  
Laura C. Keating

Abstract A cosmological zoom-in simulation that develops into a Milky Way-like halo begins at redshift 7. The initial dark matter distribution is seeded with dense star clusters of median mass 5 × 105 M ⊙, placed in the largest subhalos present, which have a median peak circular velocity of 25 km s−1. Three simulations are initialized using the same dark matter distribution with the star clusters starting on approximately circular orbits having initial median radii 6.8, 0.14 kpc, and, at the exact center of the subhalos. The simulations are evolved to the current epoch at which time the median galactic orbital radii of the three sets of clusters are 30, 5, and 16 kpc, with the clusters losing about 2%, 50%, and 15% of their mass, respectively. Clusters beginning at small orbital radii have so much tidal forcing that they are often not in equilibrium. Clusters that start at larger subhalo radii have a velocity dispersion that declines smoothly to ≃20% of the central value at ≃20 half-mass radii. The clusters that begin in the subhalo centers can show a rise in velocity dispersion beyond 3–5 half-mass radii. That is, the clusters that form without local dark matter always have stellar-mass-dominated kinematics at all radii, whereas about 25% of the clusters that begin in subhalo centers have remnant local dark matter.


2005 ◽  
Vol 20 (14) ◽  
pp. 1021-1036 ◽  
Author(s):  
GIANFRANCO BERTONE ◽  
DAVID MERRITT

Non-baryonic, or "dark", matter is believed to be a major component of the total mass budget of the Universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.


2018 ◽  
Vol 98 (8) ◽  
Author(s):  
Disrael Camargo Neves da Cunha ◽  
Joachim Harnois-Deraps ◽  
Robert Brandenberger ◽  
Adam Amara ◽  
Alexandre Refregier

2004 ◽  
Vol 604 (1) ◽  
pp. 88-107 ◽  
Author(s):  
David J. Sand ◽  
Tommaso Treu ◽  
Graham P. Smith ◽  
Richard S. Ellis

2016 ◽  
Vol 94 (12) ◽  
Author(s):  
V. Gammaldi ◽  
V. Avila-Reese ◽  
O. Valenzuela ◽  
A. X. Gonzalez-Morales

Sign in / Sign up

Export Citation Format

Share Document