scholarly journals Forecasting the Ambient Solar Wind with Numerical Models. II. An Adaptive Prediction System for Specifying Solar Wind Speed near the Sun

2020 ◽  
Vol 891 (2) ◽  
pp. 165 ◽  
Author(s):  
Martin A. Reiss ◽  
Peter J. MacNeice ◽  
Karin Muglach ◽  
Charles N. Arge ◽  
Christian Möstl ◽  
...  
2020 ◽  
Author(s):  
Tanja Amerstorfer ◽  
Jürgen Hinterreiter ◽  
Martin A. Reiss ◽  
Maike Bauer ◽  
Christian Möstl ◽  
...  

<p>During the last years, we focused on developing a prediction tool that utilizes the wide-angle observations of STEREO's heliospheric imagers. The unsurpassable advantage of these imagers is the possibility to observe the evolution and propagation of a coronal mass ejection (CME) from close to the Sun up to 1 AU and beyond. We believe that using this advantage instead of relying on coronagraph observations that are limited to observe only 14% of the Sun-Earth line, it is possible to improve today's CME arrival time predictions.<br>The ELlipse Evolution model based on HI observations (ELEvoHI) assumes an elliptic frontal shape within the ecliptic plane and allows the CME to adjust to the ambient solar wind speed, i.e. it is drag-based. ELEvoHI is used as an ensemble simulation by varying the CME frontal shape within given boundary values. The results include a frequency distrubution of predicted arrival time and arrival speed and an estimation of the arrival probability. ELEvoHI can be operated using several kinds of inputs. In this study we investigate 15 well-defined single CMEs when STEREO was around L4/5 between the end of 2009 and the beginning of 2011. Three different sources of input propagation directions (and shapes) are used together with three different sources of ambient solar wind speed and two different ways of defining the most appropriate fit to the HI data. The combination of these different approaches and inputs leads to 18 different model set-ups used to predict each of the 15 events in our list leading to 270 ELEvoHI ensemble predictions and all in all to almost 60000 runs. To identify the most suitable and most accurate model set-up to run ELEvoHI, we compare the predictions to the actual in situ arrival of the CMEs.<br>This model is specified for using data from future space weather missions carrying HIs located at L5 or L1 and can also directly be used together with STEREO-A near real-time HI beacon data to provide real-time CME arrival predictions during the next 7 years when STEREO-A is observing the Sun-Earth space.</p>


2020 ◽  
Author(s):  
Martin Reiss ◽  
Peter MacNeice ◽  
Karin Muglach ◽  
Nick Arge ◽  
Christian Möstl ◽  
...  

<p><span>The ambient solar wind flows and fields influence the complex propagation dynamics of coronal mass ejections in the interplanetary medium and play an essential role in shaping Earth's space weather environment. A critical scientific goal in the space weather research and prediction community is to develop, implement and optimize numerical models for specifying the large-scale properties of solar wind conditions at the inner boundary of the heliospheric model domain. Here we present an adaptive prediction system that fuses information from in situ measurements of the solar wind into numerical models to better match the global solar wind model solutions near the Sun with prevailing physical conditions in the vicinity of Earth. In this way, we attempt to advance the predictive capabilities of well-established solar wind models such as the Wang-Sheeley-Arge model. We perform a statistical analysis of the resulting solar wind predictions for the years 2006 to 2015. The proposed prediction scheme improves all the coronal/heliospheric model combinations investigated by approximately 15-20 percent in terms of various comprehensive prediction validation measures. We discuss why this is the case, and conclude that our findings have important implications for future practice in applied space weather research and prediction.</span></p>


2008 ◽  
Vol 4 (S257) ◽  
pp. 271-277
Author(s):  
Bojan Vršnak ◽  
Dijana Vrbanec ◽  
Jaša Čalogović ◽  
Tomislav Žic

AbstractDynamics of coronal mass ejections (CMEs) is strongly affected by the interaction of the erupting structure with the ambient magnetoplasma: eruptions that are faster than solar wind transfer the momentum and energy to the wind and generally decelerate, whereas slower ones gain the momentum and accelerate. Such a behavior can be expressed in terms of “aerodynamic” drag. We employ a large sample of CMEs to analyze the relationship between kinematics of CMEs and drag-related parameters, such as ambient solar wind speed and the CME mass. Employing coronagraphic observations it is demonstrated that massive CMEs are less affected by the aerodynamic drag than light ones. On the other hand, in situ measurements are used to inspect the role of the solar wind speed and it is shown that the Sun-Earth transit time is more closely related to the wind speed than to take-off speed of CMEs. These findings are interpreted by analyzing solutions of a simple equation of motion based on the standard form for the drag acceleration. The results show that most of the acceleration/deceleration of CMEs on their way through the interplanetary space takes place close to the Sun, where the ambient plasma density is still high. Implications for the space weather forecasting of CME arrival-times are discussed.


2021 ◽  
Author(s):  
Tereza Durovcova ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>Two large-scale interaction regions between the fast solar wind emanating from coronal holes and the slow solar wind coming from streamer belt are usually distinguished. When the fast stream pushes up against the slow solar wind ahead of it, a compressed interaction region that co-rotates with the Sun (CIR) is created. It was already shown that the relative abundance of alpha particles, which usually serve as one of solar wind source identifiers can change within this region. By symmetry, when the fast stream outruns the slow stream, a corotating rarefaction region (CRR) is formed. CRRs are characterized by a monotonic decrease of the solar wind speed, and they are associated with the regions of small longitudinal extent on the Sun. In our study, we use near-Earth measurements complemented by observations at different heliocentric distances, and focus on the behavior of alpha particles in the CRRs because we found that the large variations of the relative helium abundance (AHe) can also be observed there. Unlike in the CIRs, these variations are usually not connected with the solar wind speed and alpha-proton relative drift changes. We thus apply a superposed-epoch analysis of identified CRRs with a motivation to determine the global profile of alpha particle parameters through these regions. Next, we concentrate on the cases with largest AHe variations and investigate whether they can be associated with the changes of the solar wind source region or whether there is a relation between the AHe variations and the non-thermal features in the proton velocity distribution functions like the temperature anisotropy and/or presence of the proton beam.</p>


2020 ◽  
Vol 10 ◽  
pp. 8 ◽  
Author(s):  
Mathew J. Owens ◽  
Matthew Lang ◽  
Pete Riley ◽  
Mike Lockwood ◽  
Amos S. Lawless

Advanced space-weather forecasting relies on the ability to accurately predict near-Earth solar wind conditions. For this purpose, physics-based, global numerical models of the solar wind are initialized with photospheric magnetic field and coronagraph observations, but no further observation constraints are imposed between the upper corona and Earth orbit. Data assimilation (DA) of the available in situ solar wind observations into the models could potentially provide additional constraints, improving solar wind reconstructions, and forecasts. However, in order to effectively combine the model and observations, it is necessary to quantify the error introduced by assuming point measurements are representative of the model state. In particular, the range of heliographic latitudes over which in situ solar wind speed measurements are representative is of primary importance, but particularly difficult to assess from observations alone. In this study we use 40+ years of observation-driven solar wind model results to assess two related properties: the latitudinal representivity error introduced by assuming the solar wind speed measured at a given latitude is the same as that at the heliographic equator, and the range of latitudes over which a solar wind measurement should influence the model state, referred to as the observational localisation. These values are quantified for future use in solar wind DA schemes as a function of solar cycle phase, measurement latitude, and error tolerance. In general, we find that in situ solar wind speed measurements near the ecliptic plane at solar minimum are extremely localised, being similar over only 1° or 2° of latitude. In the uniform polar fast wind above approximately 40° latitude at solar minimum, the latitudinal representivity error drops. At solar maximum, the increased variability of the solar wind speed at high latitudes means that the latitudinal representivity error increases at the poles, though becomes greater in the ecliptic, as long as moderate speed errors can be tolerated. The heliospheric magnetic field and solar wind density and temperature show very similar behaviour.


Solar Physics ◽  
2011 ◽  
Vol 276 (1-2) ◽  
pp. 315-336 ◽  
Author(s):  
M. Tokumaru ◽  
S. Fujimaki ◽  
M. Higashiyama ◽  
A. Yokobe ◽  
T. Ohmi ◽  
...  

1996 ◽  
Vol 154 ◽  
pp. 97-104
Author(s):  
Richard Woo

AbstractSince the 1950s, a wide variety of radio observations based on scattering by electron density fluctuations in the solar wind has provided much of our information on density fluctuations and solar wind speed near the source region of the solar wind. This paper reviews recent progress in the understanding of the nature of these density fluctuations and their relationship to features on the Sun. The results include the first measurements of fine-scale structure within coronal streamers and evidence for structure in solar wind speed in the inner corona.


1996 ◽  
Vol 154 ◽  
pp. 87-96
Author(s):  
W.A. Coles

AbstractUntil the ULYSSES spacecraft reached high latitude, the only means for measuring the solar wind velocity in the polar regions was from radio scattering observations (IPS), and these remain the only way to measure the velocity near the sun. However, IPS, like many remote sensing observations, is a “line-of-sight” integrated measurement. This integration is particularly troublesome when the line-of-sight passes through a fast stream but that stream does not occupy the entire scattering region. Observations from the HELIOS spacecraft have shown that the solar wind has a bimodal character which becomes more pronounced near the sun. Recent observations from ULYSSES have confirmed that this structure is clear at high latitudes even at relatively large solar distances. We have developed a method of separating the fast and slow contributions to an IPS observation which takes advantage of this bimodal structure. In this paper I will describe the technique and its application to IPS observations made using the receiving antennas of the EISCAT incoherent backscatter radar observatory in northern Scandinavia.


Sign in / Sign up

Export Citation Format

Share Document