scholarly journals Negative Magnetic Diffusivity β Replacing the α Effect in the Helical Dynamo

2020 ◽  
Vol 898 (2) ◽  
pp. 112
Author(s):  
Kiwan Park
Keyword(s):  
1970 ◽  
Vol 41 (2) ◽  
pp. 435-452 ◽  
Author(s):  
H. K. Moffatt

The effect of turbulence on a magnetic field whose length-scale L is initially large compared with the scale l of the turbulence is considered. There are no external sources for the field, and in the absence of turbulence it decays by ohmic dissipation. It is assumed that the magnetic Reynolds number Rm = u0l/λ (where u0 is the root-mean-square velocity and λ the magnetic diffusivity) is small. It is shown that to lowest order in the small quantities l/L and Rm, isotropic turbulence has no effect on the large-scale field; but that turbulence that lacks reflexional symmetry is capable of amplifying Fourier components of the field on length scales of order Rm−2l and greater. In the case of turbulence whose statistical properties are invariant under rotation of the axes of reference, but not under reflexions in a point, it is shown that the magnetic energy density of a magnetic field which is initially a homogeneous random function of position with a particularly simple spectrum ultimately increases as t−½exp (α2t/2λ3) where α(= O(u02l)) is a certain linear functional of the spectrum tensor of the turbulence. An analogous result is obtained for an initially localized field.


2020 ◽  
Vol 636 ◽  
pp. A93 ◽  
Author(s):  
P. J. Käpylä ◽  
M. Rheinhardt ◽  
A. Brandenburg ◽  
M. J. Käpylä

Context. Turbulent diffusion of large-scale flows and magnetic fields plays a major role in many astrophysical systems, such as stellar convection zones and accretion discs. Aims. Our goal is to compute turbulent viscosity and magnetic diffusivity which are relevant for diffusing large-scale flows and magnetic fields, respectively. We also aim to compute their ratio, which is the turbulent magnetic Prandtl number, Pmt, for isotropically forced homogeneous turbulence. Methods. We used simulations of forced turbulence in fully periodic cubes composed of isothermal gas with an imposed large-scale sinusoidal shear flow. Turbulent viscosity was computed either from the resulting Reynolds stress or from the decay rate of the large-scale flow. Turbulent magnetic diffusivity was computed using the test-field method for a microphysical magnetic Prandtl number of unity. The scale dependence of the coefficients was studied by varying the wavenumber of the imposed sinusoidal shear and test fields. Results. We find that turbulent viscosity and magnetic diffusivity are in general of the same order of magnitude. Furthermore, the turbulent viscosity depends on the fluid Reynolds number (Re) and scale separation ratio of turbulence. The scale dependence of the turbulent viscosity is found to be well approximated by a Lorentzian. These results are similar to those obtained earlier for the turbulent magnetic diffusivity. The results for the turbulent transport coefficients appear to converge at sufficiently high values of Re and the scale separation ratio. However, a weak trend is found even at the largest values of Re, suggesting that the turbulence is not in the fully developed regime. The turbulent magnetic Prandtl number converges to a value that is slightly below unity for large Re. For small Re we find values between 0.5 and 0.6 but the data are insufficient to draw conclusions regarding asymptotics. We demonstrate that our results are independent of the correlation time of the forcing function. Conclusions. The turbulent magnetic diffusivity is, in general, consistently higher than the turbulent viscosity, which is in qualitative agreement with analytic theories. However, the actual value of Pmt found from the simulations (≈0.9−0.95) at large Re and large scale separation ratio is higher than any of the analytic predictions (0.4−0.8).


2021 ◽  
Author(s):  
Rocio Manobanda ◽  
Christian Vasconez ◽  
Denise Perrone ◽  
Raffaele Marino ◽  
Dimitri Laveder ◽  
...  

<p>Structured, highly variable and virtually collision-free. Space plasma is an unique laboratory for studying the transfer of energy in a highly turbulent environment. This turbulent medium plays an important role in various aspects of the Solar--Wind generation, particles acceleration and heating, and even in the propagation of cosmic rays. Moreover, the Solar Wind continuous expansion develops a strong turbulent character, which evolves towards a state that resembles the well-known hydrodynamic turbulence (Bruno and Carbone). This turbulence is then dissipated from magnetohydrodynamic (MHD) through kinetic scales by different -not yet well understood- mechanisms. In the MHD approach, Kolmogorov-like behaviour is supported by power-law spectra and intermittency measured in observations of magnetic and velocity fluctuations. In this regime, the intermittent cross-scale energy transfer has been extensively described by the Politano--Pouquet (global) law, which is based on conservation laws of the MHD invariants, and was recently expanded to take into account the physics at the bottom of the inertial (or Hall) range, e.g. (Ferrand et al., 2019). Following the 'Turbulence Dissipation Challenge', we study the properties of the turbulent energy transfer using three different bi-dimensional numerical models of space plasma. The models, Hall-MHD (HMHD), Landau Fluid (LF) and Hybrid Vlasov-Maxwell (HVM), were ran in collisionless-plasma conditions, with an out-of-plane ambient magnetic field, and with magnetic diffusivity carefully calibrated in the fluid models. As each model has its own range of validity, it allows us to explore a long-enough range of scales at a period of maximal turbulence activity. Here, we estimate the local and global scaling properties of different energy channels using a, recently introduced, proxy of the local turbulent energy transfer (LET) rate (Sorriso-Valvo et al., 2018). This study provides information on the structure of the energy fluxes that transfers (and dissipates) most of the energy at small scales throughout the turbulent cascade. </p>


2004 ◽  
Vol 202 ◽  
pp. 359-361
Author(s):  
Mauricio Reyes-Ruiz

In this paper we present results on the effect of the vertical stratification of magnetic diffusivity, expected in current models of protoplanetary discs, on the development of the magnetorotational instability. Specifically, on the basis of a quasi-global, linear analysis we study the operation of the magnetorotational instability across the so-called dead zone of protoplanetary discs. Our results indicate that the predicted strong vertical diffusivity gradients can damp the instability in such regions. This suggests the necessity of a revision of current models for the structure and evolution of protoplanetary discs.


1984 ◽  
Vol 5 (4) ◽  
pp. 500-502 ◽  
Author(s):  
P. R. Wilson

The rate of change of magnetic flux Ф contained within a closed curve C moving with the plasma velocity u, is given bywhere B is the magnetic induction and S is a surface bounded by the curve C. Using the hydromagnetic equation,where η is the magnetic diffusivity, this becomesIn many astrophysical contexts η is small and thus approximatelySince this implies that the flux within any moving closed curve does not change, the field is said to be ‘frozen into’ the plasma and moving with it.


1993 ◽  
Vol 157 ◽  
pp. 395-401 ◽  
Author(s):  
Harald Lesch

Stimulated by recent high frequency radio polarization measurements of M83 and M51, we consider the influence of non-axisymmetric features (bars, spiral arms, etc…) on galactic magnetic fields. The time scale for the field amplification due to the non-axisymmetric velocity field is related to the time scale of angular momentum transport in the disk by the non-axisymmetric features. Due to its dissipational character (cooling and angular momentum transport) the gas plays a major role for the excitation of non-axisymmetric instabilities. Since it is the gaseous component of the interstellar gas in which magnetic field amplification takes place we consider the interplay of gasdynamical processes triggered by gravitational instabilities and magnetic fields. A comparison with the time scale for dynamo action in a disk from numerical models for disk dynamos gives the result that field amplification by non-axisymmetric features is faster in galaxies like M83 (strong bar) and M51 (compagnion and very distinct spiral structure), than amplification by an axisymmetric dynamo. Furthermore, we propose that axisymmetric gravitational instabilities may provide the turbulent magnetic diffusivity ηT. Based on standard galaxy models we obtain a radially dependent diffusivity whose numerical value rises from 1025cm2s−1 to 1027cm2s−1, declining for large radii.


2003 ◽  
Vol 411 (3) ◽  
pp. 321-327 ◽  
Author(s):  
T. A. Yousef ◽  
A. Brandenburg ◽  
G. Rüdiger

2019 ◽  
Vol 632 ◽  
pp. A87 ◽  
Author(s):  
K. Petrovay ◽  
M. Talafha

Context. The choice of free parameters in surface flux transport (SFT) models describing the evolution of the large-scale poloidal magnetic field of the Sun is critical for the correct reproduction of the polar magnetic flux built up during a solar cycle, which is known to be a good predictor of the amplitude of the upcoming cycle. Aims. For an informed choice of parameters it is important to understand the effects of and interplay among the various parameters and to optimize the models for the polar magnetic field. Methods. Here we present the results of a large-scale systematic study of the parameter space in an SFT model where the source term representing the net effect of tilted flux emergence was chosen to represent a typical, average solar cycle as described by observations. Results. Comparing the results with observational constraints on the spatiotemporal variation of the polar magnetic field, as seen in magnetograms for the last four solar cycles, we mark allowed and excluded regions in the 3D parameter space defined by the flow amplitude u0, the magnetic diffusivity η and the decay time scale τ, for three different assumed meridional flow profiles. Conclusions. Without a significant decay term in the SFT equation (i.e., for τ >  10 yr) the global dipole moment reverses too late in the cycle for all flow profiles and parameters, providing independent supporting evidence for the need of a decay term, even in the case of identical cycles. An allowed domain is found to exist for τ values in the 5–10 yr range for all flow profiles considered. Generally higher values of η (500–800 km2 s−1) are preferred though some solutions with lower η are still allowed.


Sign in / Sign up

Export Citation Format

Share Document