scholarly journals A Catalog of 204 Offset and Dual Active Galactic Nuclei (AGNs): Increased AGN Activation in Major Mergers and Separations under 4 kpc

2021 ◽  
Vol 923 (1) ◽  
pp. 36
Author(s):  
Aaron Stemo ◽  
Julia M. Comerford ◽  
R. Scott Barrows ◽  
Daniel Stern ◽  
Roberto J. Assef ◽  
...  

Abstract During galaxy mergers, gas and dust are driven toward the centers of merging galaxies, triggering enhanced star formation and supermassive black hole (SMBH) growth. Theory predicts that this heightened activity peaks at SMBH separations <20 kpc; if sufficient material accretes onto one or both of the SMBHs for them to become observable as active galactic nuclei (AGNs) during this phase, they are known as offset and dual AGNs, respectively. To better study these systems, we have built the ACS-AGN Merger Catalog, a large catalog (N = 204) of uniformly selected offset and dual AGN observed by the Hubble Space Telescope at 0.2 < z < 2.5 with separations <20 kpc. Using this catalog, we answer many questions regarding SMBH−galaxy coevolution during mergers. First, we confirm predictions that the AGN fraction peaks at SMBH pair separations <10 kpc; specifically, we find that the fraction increases significantly at pair separations of <4 kpc. Second, we find that AGNs in mergers are preferentially found in major mergers and that the fraction of AGNs found in mergers follows a logarithmic relation, decreasing as merger mass ratio increases. Third, we do not find that mergers (nor the major or minor merger subpopulations) trigger the most luminous AGNs. Finally, we find that nuclear column density, AGN luminosity, and host galaxy star formation rate have no dependence on SMBH pair separation or merger mass ratio in these systems, nor do the distributions of these values differ significantly from that of the overall AGN population.

2019 ◽  
Vol 632 ◽  
pp. A88
Author(s):  
V. Allevato ◽  
A. Viitanen ◽  
A. Finoguenov ◽  
F. Civano ◽  
H. Suh ◽  
...  

Aims. We perform clustering measurements of 800 X-ray selected Chandra COSMOS Legacy (CCL) Type 2 active galactic nuclei (AGN) with known spectroscopic redshift to probe the halo mass dependence on AGN host galaxy properties, such as galaxy stellar mass Mstar, star formation rate (SFR), and specific black hole accretion rate (BHAR; λBHAR) in the redshift range z = [0−3]. Methods. We split the sample of AGN with known spectroscopic redshits according to Mstar, SFR and λBHAR, while matching the distributions in terms of the other parameters, including redshift. We measured the projected two-point correlation function wp(rp) and modeled the clustering signal, for the different subsamples, with the two-halo term to derive the large-scale bias b and corresponding typical mass of the hosting halo. Results. We find no significant dependence of the large-scale bias and typical halo mass on galaxy stellar mass and specific BHAR for CCL Type 2 AGN at mean z ∼ 1, while a negative dependence on SFR is observed, i.e. lower SFR AGN reside in richer environment. Mock catalogs of AGN, matched to have the same X-ray luminosity, stellar mass, λBHAR, and SFR of CCL Type 2 AGN, almost reproduce the observed Mstar − Mh, λBHAR − Mh and SFR–Mh relations, when assuming a fraction of satellite AGN fAGNsat ∼ 0.15. This corresponds to a ratio of the probabilities of satellite to central AGN of being active Q ∼ 2. Mock matched normal galaxies follow a slightly steeper Mstar − Mh relation, in which low mass mock galaxies reside in less massive halos than mock AGN of similar mass. Moreover, matched mock normal galaxies are less biased than mock AGN with similar specific BHAR and SFR, at least for Q >  1.


2018 ◽  
Vol 620 ◽  
pp. A113 ◽  
Author(s):  
M. Argudo-Fernández ◽  
I. Lacerna ◽  
S. Duarte Puertas

Context. Galaxy mass and environment play a major role in the evolution of galaxies. In the transition from star-forming to quenched galaxies, active galactic nuclei (AGNs) also have a principal action therein. However, the connections between these three actors are still uncertain. Aims. In this work we investigate the effects of stellar mass and the large-scale structure (LSS) environment on the fraction of optical nuclear activity in a population of isolated galaxies, where AGN would not be triggered by recent galaxy interactions or mergers. Methods. As a continuation of a previous work, we focus on isolated galaxies to study the effect of stellar mass and the LSS in terms of morphology (early- and late-type), colour (red and blue), and specific star-formation rate (quenched and star-forming). To explore where AGN activity is affected by the LSS, we separate galaxies into two groups, of low- and high mass, respectively, and use the tidal strength parameter to quantify the effects. Results. We found that AGN is strongly affected by stellar mass in “active” galaxies (namely late-type, blue, and star-forming), but that mass has no influence on “quiescent” galaxies (namely early-type, red, and quenched), at least for masses down to 1010 M⊙. In relation to the LSS, we found an increase in the fraction of star-forming nuclei galaxies with denser LSS in low-mass star-forming and red isolated galaxies. Regarding AGN, we find a clear increase in the fraction of AGNs with denser environment in quenched and red isolated galaxies, independently of the stellar mass. Conclusions. Active galactic nuclei activity appears to be “mass triggered” in active isolated galaxies. This means that AGN activity is independent of the intrinsic properties of the galaxies, but is dependent on their stellar mass. On the other hand, AGN activity appears to be “environment triggered” in quiescent isolated galaxies, where the fraction of AGNs as a function of specific star formation rate and colour increases from void regions to denser LSS, independently of stellar mass.


2019 ◽  
Vol 15 (S356) ◽  
pp. 345-347
Author(s):  
Khatun Rubinur ◽  
Mousumi Das ◽  
Preeti Kharb ◽  
P. T. Rahne

AbstractSimulations expect an enhanced star-formation and active galactic nuclei (AGN) activity during galaxy mergers, which can lead to formation of binary/dual AGN. AGN feedback can enhance or suppress star-formation. We have carried out a pilot study of a sample of ˜10 dual nuclei galaxies with AstroSat’s Ultraviolet Imaging Telescope (UVIT). Here, we present the initial results for two sample galaxies (Mrk 739, ESO 509) and deep multi-wavelength data of another galaxy (Mrk 212). UVIT observations have revealed signatures of positive AGN feedback in Mrk 739 and Mrk 212, and negative feedback in ESO 509. Deeper UVIT observations have recently been approved; these will provide better constraints on star-formation as well as AGN feedback in these systems.


2012 ◽  
Vol 8 (S292) ◽  
pp. 181-183
Author(s):  
Vincenzo Mainieri ◽  
Angela Bongiorno ◽  

AbstractWe explore the connection between black hole growth at the center of obscured quasars selected from the XMM-COSMOS survey and the physical properties of their host galaxies. We study a bolometric regime (<Lbol> ∼ 8 × 1045 erg s−1) where several theoretical models invoke major galaxy mergers as the main fueling channel for black hole accretion. To derive robust estimates of the host galaxy properties, we use an SED fitting technique to distinguish the AGN and host galaxy emission. We find that at z ∼ 1, ≈ 62% of Type-2 QSOs hosts are actively forming stars and that their rates are comparable to those measured for normal star-forming galaxies. The fraction of star-forming hosts increases with redshift: ≈ 71% at z ∼ 2, and 100% at z ∼ 3. We also find that the evolution from z ∼ 1 to z ∼ 3 of the specific star-formation rate of the Type-2 QSO hosts is in excellent agreement with that measured for star-forming galaxies.


2012 ◽  
Vol 755 (2) ◽  
pp. 171 ◽  
Author(s):  
L. Sargsyan ◽  
V. Lebouteiller ◽  
D. Weedman ◽  
H. Spoon ◽  
J. Bernard-Salas ◽  
...  

2020 ◽  
Vol 494 (1) ◽  
pp. 1189-1202 ◽  
Author(s):  
C Bornancini ◽  
D García Lambas

ABSTRACT We analyse different photometric and spectroscopic properties of active galactic nuclei (AGNs) and quasars (QSOs) selected by their mid-IR power-law and X-ray emission from the COSMOS survey. We use a set of star-forming galaxies as a control sample to compare with the results. We have considered samples of obscured (HR &gt; −0.2) and unobscured (HR &lt; −0.2) sources including AGNs with LX &lt; 1044 erg s−1, as well as QSOs (LX &gt; 1044 erg s−1) with 1.4 ≤ z ≤ 2.5. We also study the typical environment of these samples, by assessing neighbouring galaxy number density and neighbour properties such as colour, stellar mass, and star formation rate. We find that the UV/optical and mid-infrared colour distribution of the different AGN types differ significantly. Also, we obtain most of AGNs and QSOs to be more compact when compared to the sample of SF galaxies. In general we find that the stellar mass distribution of the different AGN sample are similar, obtaining only a difference of $\Delta \overline{\mathrm{log}M}=0.3$ dex (M⊙) between unobscured and obscured QSOs. Obscured and unobscured AGNs and QSOs reside in different local environment at small (rp &lt; 100 kpc) scales. Our results support previous findings where AGN type correlates with environment. These differences and those found in AGN host properties cast out the simplest unified model in which obscuration is purely an orientation effect.


Author(s):  
Rogério Riffel ◽  
Nicolas D Mallmann ◽  
Gabriele S Ilha ◽  
Thaisa Storchi-Bergmann ◽  
Rogemar A Riffel ◽  
...  

Abstract The effect of active galactic nuclei (AGN) feedback on the host galaxy, and its role in quenching or enhancing star-formation, is still uncertain due to the fact that usual star-formation rate (SFR) indicators – emission-line luminosities based on the assumption of photoionisation by young stars – cannot be used for active galaxies as the ionising source is the AGN. We thus investigate the use of SFR derived from the stellar population and its relation with that derived from the gas for a sample of 170 AGN hosts and a matched control sample of 291 galaxies. We compare the values of SFR densities obtained via the Hα emission line ($\rm \Sigma SFR_{Gas}$) for regions ionised by hot stars according to diagnostic diagrams with those obtained from stellar population synthesis ($\rm \Sigma SFR_\star$) over the last 1 to 100 Myr. We find that the $\rm \Sigma SFR_\star$over the last 20 Myrs closely reproduces the $\rm \Sigma SFR_{Gas}$, although a better match is obtained via the transformation: $\mbox{log($ \rm \Sigma SFR_\star $)} = (0.872\pm 0.004)\mbox{log($\rm \Sigma SFR_{Gas}$)} -(0.075\pm 0.006)$ (or $\mbox{log($\rm \Sigma SFR_{Gas}$)} = (1.147\pm 0.005)\mbox{log($ \rm \Sigma SFR_\star $)} +(0.086\pm 0.080)$), which is valid for both AGN hosts and non-active galaxies. We also compare the reddening obtained via the gas Hα/Hβ ratio with that derived via the full spectral fitting in the stellar population synthesis. We find that the ratio between the gas and stellar extinction is in the range 2.64 ≤AVg/AV⋆ ≤ 2.85, in approximate agreement with previous results from the literature, obtained for smaller samples. We interpret the difference as being due to the fact that the reddening of the stars is dominated by that affecting the less obscured underlying older population, while the reddening of the gas is larger as it is associated to a younger stellar population buried deeper in the dust.


Sign in / Sign up

Export Citation Format

Share Document