Measuring the Star-Formation Rate in Active Galactic Nuclei

2021 ◽  
pp. 225-242
Author(s):  
Brent Groves
2018 ◽  
Vol 620 ◽  
pp. A113 ◽  
Author(s):  
M. Argudo-Fernández ◽  
I. Lacerna ◽  
S. Duarte Puertas

Context. Galaxy mass and environment play a major role in the evolution of galaxies. In the transition from star-forming to quenched galaxies, active galactic nuclei (AGNs) also have a principal action therein. However, the connections between these three actors are still uncertain. Aims. In this work we investigate the effects of stellar mass and the large-scale structure (LSS) environment on the fraction of optical nuclear activity in a population of isolated galaxies, where AGN would not be triggered by recent galaxy interactions or mergers. Methods. As a continuation of a previous work, we focus on isolated galaxies to study the effect of stellar mass and the LSS in terms of morphology (early- and late-type), colour (red and blue), and specific star-formation rate (quenched and star-forming). To explore where AGN activity is affected by the LSS, we separate galaxies into two groups, of low- and high mass, respectively, and use the tidal strength parameter to quantify the effects. Results. We found that AGN is strongly affected by stellar mass in “active” galaxies (namely late-type, blue, and star-forming), but that mass has no influence on “quiescent” galaxies (namely early-type, red, and quenched), at least for masses down to 1010 M⊙. In relation to the LSS, we found an increase in the fraction of star-forming nuclei galaxies with denser LSS in low-mass star-forming and red isolated galaxies. Regarding AGN, we find a clear increase in the fraction of AGNs with denser environment in quenched and red isolated galaxies, independently of the stellar mass. Conclusions. Active galactic nuclei activity appears to be “mass triggered” in active isolated galaxies. This means that AGN activity is independent of the intrinsic properties of the galaxies, but is dependent on their stellar mass. On the other hand, AGN activity appears to be “environment triggered” in quiescent isolated galaxies, where the fraction of AGNs as a function of specific star formation rate and colour increases from void regions to denser LSS, independently of stellar mass.


2012 ◽  
Vol 755 (2) ◽  
pp. 171 ◽  
Author(s):  
L. Sargsyan ◽  
V. Lebouteiller ◽  
D. Weedman ◽  
H. Spoon ◽  
J. Bernard-Salas ◽  
...  

2021 ◽  
Vol 923 (1) ◽  
pp. 36
Author(s):  
Aaron Stemo ◽  
Julia M. Comerford ◽  
R. Scott Barrows ◽  
Daniel Stern ◽  
Roberto J. Assef ◽  
...  

Abstract During galaxy mergers, gas and dust are driven toward the centers of merging galaxies, triggering enhanced star formation and supermassive black hole (SMBH) growth. Theory predicts that this heightened activity peaks at SMBH separations <20 kpc; if sufficient material accretes onto one or both of the SMBHs for them to become observable as active galactic nuclei (AGNs) during this phase, they are known as offset and dual AGNs, respectively. To better study these systems, we have built the ACS-AGN Merger Catalog, a large catalog (N = 204) of uniformly selected offset and dual AGN observed by the Hubble Space Telescope at 0.2 < z < 2.5 with separations <20 kpc. Using this catalog, we answer many questions regarding SMBH−galaxy coevolution during mergers. First, we confirm predictions that the AGN fraction peaks at SMBH pair separations <10 kpc; specifically, we find that the fraction increases significantly at pair separations of <4 kpc. Second, we find that AGNs in mergers are preferentially found in major mergers and that the fraction of AGNs found in mergers follows a logarithmic relation, decreasing as merger mass ratio increases. Third, we do not find that mergers (nor the major or minor merger subpopulations) trigger the most luminous AGNs. Finally, we find that nuclear column density, AGN luminosity, and host galaxy star formation rate have no dependence on SMBH pair separation or merger mass ratio in these systems, nor do the distributions of these values differ significantly from that of the overall AGN population.


2021 ◽  
Vol 923 (1) ◽  
pp. 6
Author(s):  
Gaoxiang Jin ◽  
Y. Sophia Dai ◽  
Hsi-An Pan ◽  
Lihwai Lin ◽  
Cheng Li ◽  
...  

Abstract The role of active galactic nuclei (AGNs) during galaxy interactions and how they influence the star formation in the system are still under debate. We use a sample of 1156 galaxies in galaxy pairs or mergers (hereafter “pairs”) from the MaNGA survey. This pair sample is selected by the velocity offset, projected separation, and morphology, and is further classified into four cases along the merger sequence based on morphological signatures. We then identify a total of 61 (5.5%) AGNs in pairs based on the emission-line diagnostics. No evolution of the AGN fraction is found, either along the merger sequence or compared to isolated galaxies (5.0%). We observe a higher fraction of passive galaxies in galaxy pairs, especially in the pre-merging cases, and associate the higher fraction to their environmental dependence. The isolated AGN and AGNs in pairs show similar distributions in their global stellar mass, star-formation rate (SFR), and central [O iii] surface brightness. AGNs in pairs show radial profiles of increasing specific SFR and declining Dn4000 from center to outskirts, and no significant difference from the isolated AGNs. This is clearly different from star-forming galaxies (SFGs) in our pair sample, which show enhanced central star formation, as reported before. AGNs in pairs have lower Balmer decrements at outer regions, possibly indicating less dust attenuation. Our findings suggest that AGNs are likely follow an inside-out quenching and the merger impact on the star formation in AGNs is less prominent than in SFGs.


2020 ◽  
Vol 497 (4) ◽  
pp. 5024-5040 ◽  
Author(s):  
Mattia C Sormani ◽  
Robin G Tress ◽  
Simon C O Glover ◽  
Ralf S Klessen ◽  
Cara D Battersby ◽  
...  

ABSTRACT The Milky Way’s Central Molecular Zone (CMZ) has emerged in recent years as a unique laboratory for the study of star formation. Here we use the simulations presented in Tress et al. to investigate star formation in the CMZ. These simulations resolve the structure of the interstellar medium at sub-parsec resolution while also including the large-scale flow in which the CMZ is embedded. Our main findings are as follows. (1) While most of the star formation happens in the CMZ ring at $R\gtrsim 100 \, {\rm pc}$, a significant amount also occurs closer to Sgr A* at $R \lesssim 10\, {\rm pc}$. (2) Most of the star formation in the CMZ happens downstream of the apocentres, consistent with the ‘pearls-on-a-string’ scenario, and in contrast to the notion that an absolute evolutionary timeline of star formation is triggered by pericentre passage. (3) Within the time-scale of our simulations (∼100 Myr), the depletion time of the CMZ is constant within a factor of ∼2. This suggests that variations in the star formation rate are primarily driven by variations in the mass of the CMZ, caused, for example, by active galactic nuclei (AGN) feedback or externally induced changes in the bar-driven inflow rate, and not by variations in the depletion time. (4) We study the trajectories of newly born stars in our simulations. We find several examples that have age and 3D velocity compatible with those of the Arches and Quintuplet clusters. Our simulations suggest that these prominent clusters originated near the collision sites where the bar-driven inflow accretes on to the CMZ, at symmetrical locations with respect to the Galactic Centre, and that they have already decoupled from the gas in which they were born.


2017 ◽  
Vol 470 (1) ◽  
pp. 606-611 ◽  
Author(s):  
M. Brorby ◽  
P. Kaaret

Abstract X-ray observations of two metal-deficient luminous compact galaxies (LCG; SHOC 486 and SDSS J084220.94+115000.2) with properties similar to the so-called Green Pea galaxies were obtained using the Chandra X-ray Observatory. Green Pea galaxies are relatively small, compact (a few kpc across) galaxies that get their green colour from strong [O iii] λ5007 Å emission, an indicator of intense, recent star formation. These two galaxies were predicted to have the highest observed count rates, using the X-ray luminosity–star formation rate (LX–SFR) relation for X-ray binaries, from a statistically complete sample drawn from optical criteria. We determine the X-ray luminosity relative to SFR and metallicity for these two galaxies. Neither exhibits any evidence of active galactic nuclei, and we suspect that the X-ray emission originates from unresolved populations of high-mass X-ray binaries. We discuss the LX–SFR–metallicity plane for star-forming galaxies and show that the two LCGs are consistent with the prediction of this relation. This is the first detection of Green Pea analogues in X-rays.


1996 ◽  
Vol 157 ◽  
pp. 188-196 ◽  
Author(s):  
Luis C. Ho ◽  
Alexei V. Filippenko ◽  
Wallace L. W. Sargent

AbstractTheoretical studies suggest that large-scale stellar bars can be highly effective in delivering gas to the central few hundred parsecs of a spiral galaxy, which may then initiate rapid star formation. Further instabilities may lead to additional inflow to physical scales relevant for active galactic nuclei. We test these predictions in light of recent observations. Compared to unbarred spirals, barred galaxies of type S0-Sbc have a higher probability of exhibiting nuclear star formation, as well as a higher formation rate of massive stars; neither effect is present in spirals of later morphological type. Bars, on the other hand, do not have an obvious influence on active nuclei. We discuss the implications of these findings for the fueling of central star formation and active nuclei.


2019 ◽  
Vol 15 (S356) ◽  
pp. 339-341
Author(s):  
Solohery M. Randriamampandry ◽  
Mattia Vaccari ◽  
Kelley M. Hess

AbstractWe investigate the relationship between environment and star formation main sequence (the relationship between stellar mass and star formation rate) to shed new light on the effects of the environments on star-forming galaxies. We use the large VLA-COSMOS 3 GHz catalogue that consist of star-forming galaxies (SFGs) and active galactic nuclei (AGN) in three different environments (field, filament, cluster) and for different galaxy types. We examine for the first time a comparative analysis for the distribution of SFGs with respect to the star formation main sequence (MS) consensus region from the literature, taking into account galaxy environment and using radio selected sample at 0.1 ≤ z ≤ 1.2 drawn from one of the deepest COSMOS radio surveys. We find that, as observed previously, SFRs increase with redshift independent on the environments. Furthermore, we observe that SFRs versus M* relation is flat in all cases, irrespective of the redshift and environments.


2020 ◽  
Vol 634 ◽  
pp. A26 ◽  
Author(s):  
L. S. Pilyugin ◽  
E. K. Grebel ◽  
I. A. Zinchenko ◽  
J. M. Vílchez ◽  
F. Sakhibov ◽  
...  

We derive the photometric, kinematic, and abundance characteristics of 18 star-forming MaNGA galaxies with fairly regular velocity fields and surface brightness distributions and with a large offset between the measured position angles of the major kinematic and photometric axes, ΔPA ≳ 20°. The aim is to examine if there is any other distinctive characteristic common to these galaxies. We found morphological signs of interaction in some (in 11 out of 18) but not in all galaxies. The observed velocity fields show a large variety; the maps of the isovelocities vary from an hourglass-like appearance to a set of straight lines. The position angles of the major kinematic axes of the stellar and gas rotations are close to each other. The values of the central oxygen abundance, radial abundance gradient, and star formation rate are distributed within the intervals defined by galaxies with small (no) ΔPA of similar mass. Thus, we do not find any specific characteristic common to all galaxies with large ΔPA. Instead, the properties of these galaxies are similar to those of galaxies with small (no) ΔPA. This suggests that either the reason responsible for the large ΔPA does not influence other characteristics or the galaxies with large ΔPA do not share a common origin, they can, instead, originate through different channels.


Sign in / Sign up

Export Citation Format

Share Document