scholarly journals The Nuclear Star Cluster and Nuclear Stellar Disk of the Milky Way: Different Stellar Populations and Star Formation Histories

2021 ◽  
Vol 920 (2) ◽  
pp. 97
Author(s):  
Francisco Nogueras-Lara ◽  
Rainer Schödel ◽  
Nadine Neumayer
2008 ◽  
Vol 4 (S258) ◽  
pp. 61-72
Author(s):  
Monica Tosi

AbstractThe colour-magnitude diagrams of resolved stellar populations are the best tool to study the star formation histories of the host galactic regions. In this review the method to derive star formation histories by means of synthetic colour-magnitude diagrams is briefly outlined, and the results of its application to resolved galaxies of various morphological types are summarized. It is shown that all the galaxies studied so far were already forming stars at the lookback time reached by the observational data, independently of morphological type and metallicity. Early-type galaxies have formed stars predominantly, but in several cases not exclusively, at the earliest epochs. All the other galaxies appear to have experienced rather continuous star formation activities throughout their lifetimes, although with significant rate variations and, sometimes, short quiescent phases.


2014 ◽  
Vol 789 (1) ◽  
pp. 24 ◽  
Author(s):  
Daniel R. Weisz ◽  
Evan D. Skillman ◽  
Sebastian L. Hidalgo ◽  
Matteo Monelli ◽  
Andrew E. Dolphin ◽  
...  

2004 ◽  
Vol 21 (4) ◽  
pp. 379-381
Author(s):  
Matthew Coleman

AbstractRecent years have seen a series of large-scale photometric surveys with the aim of detecting substructure in nearby dwarf galaxies. Some of these objects display a varying distribution of each stellar population, reflecting their star formation histories. Also, dwarf galaxies are dominated by dark matter, therefore luminous substructure may represent a perturbation in the underlying dark material. Substructure can also be the effect of tidal interaction, such as the disruption of the Sagittarius dSph by the Milky Way. Therefore, substructure in dwarf galaxies manifests the stellar, structural, and kinematic evolution of these objects.


2020 ◽  
Vol 637 ◽  
pp. A56 ◽  
Author(s):  
Justus Neumann ◽  
Francesca Fragkoudi ◽  
Isabel Pérez ◽  
Dimitri A. Gadotti ◽  
Jesús Falcón-Barroso ◽  
...  

Stellar populations in barred galaxies save an imprint of the influence of the bar on the host galaxy’s evolution. We present a detailed analysis of star formation histories (SFHs) and chemical enrichment of stellar populations in nine nearby barred galaxies from the TIMER project. We used integral field observations with the MUSE instrument to derive unprecedented spatially resolved maps of stellar ages, metallicities, [Mg/Fe] abundances, and SFHs, as well as Hα as a tracer of ongoing star formation. We find a characteristic V-shaped signature in the SFH that is perpendicular to the bar major axis, which supports the scenario where intermediate-age stars (∼2 − 6 Gyr) are trapped on more elongated orbits shaping a thinner part of the bar, while older stars (> 8 Gyr) are trapped on less elongated orbits shaping a rounder and thicker part of the bar. We compare our data to state-of-the-art cosmological magneto-hydrodynamical simulations of barred galaxies and show that such V-shaped SFHs arise naturally due to the dynamical influence of the bar on stellar populations with different ages and kinematic properties. Additionally, we find an excess of very young stars (< 2 Gyr) on the edges of the bars, predominantly on the leading side, thus confirming typical star formation patterns in bars. Furthermore, mass-weighted age and metallicity gradients are slightly shallower along the bar than in the disc, which is likely due to orbital mixing in the bar. Finally, we find that bars are mostly more metal-rich and less [Mg/Fe]-enhanced than the surrounding discs. We interpret this as a signature that the bar quenches star formation in the inner region of discs, usually referred to as star formation deserts. We discuss these results and their implications on two different scenarios of bar formation and evolution.


1996 ◽  
Vol 174 ◽  
pp. 81-90
Author(s):  
R. Genzel

High resolution near-infrared imaging and spectroscopy now gives detailed information about the structure, evolution and mass distribution in the nuclear star cluster of the Milky Way. The central parsec is powered by a cluster of luminous and helium rich, blue supergiants/Wolf-Rayet stars. The most likely scenario for the formation of the massive stars is a star formation burst a few million years ago at which time a dense gas cloud may have fallen into the center. The stellar density in the ∼ 0.3 pc radius central core is high enough that collisions with main sequence stars destroy the largest late type giant stars. Radial velocity measurements for about 300 early and late type stars between 0.1 and 5pc radius from the dynamic center now strongly favor the existence of a central dark mass of 2.5 − 3.3 × 106M⊙ (density (109M⊙pc−3, M/L2μm) ∼ 100M⊙/L⊙) within 0.1pc of the dynamic center. This central dark mass cannot be a cluster of neutron stars. It is either a compact cluster of stellar black holes or, most likely, a single massive black hole.


2012 ◽  
Vol 8 (S295) ◽  
pp. 125-128
Author(s):  
Ignacio Ferreras

AbstractThe formation and evolution of massive galaxies represent one of the most intriguing open problems in astrophysics. Their underlying stellar populations encode valuable information about their past history. Detailed spectroscopic observations allow us to constrain the star formation histories, revealing a complicated mixture of a strong, early formation process, followed by passive evolution in the cores, along with an extended assembly of the outer regions via minor mergers. In this contributed talk, some recent results are presented from the analysis of samples of massive galaxies both at z ~ 0 and moderate redshift.


2014 ◽  
Vol 10 (S309) ◽  
pp. 93-98
Author(s):  
R. Cid Fernandes ◽  
E. A. D. Lacerda ◽  
R. M. González Delgado ◽  
N. Vale Asari ◽  
R. García-Benito ◽  
...  

AbstractMethods to recover the fossil record of galaxy evolution encoded in their optical spectra have been instrumental in processing the avalanche of data from mega-surveys along the last decade, effectively transforming observed spectra onto a long and rich list of physical properties: from stellar masses and mean ages to full star formation histories. This promoted progress in our understanding of galaxies as a whole. Yet, the lack of spatial resolution introduces undesirable aperture effects, and hampers advances on the internal physics of galaxies. This is now changing with 3D surveys. The mapping of stellar populations in data-cubes allows us to figure what comes from where, unscrambling information previously available only in integrated form. This contribution uses our starlight-based analysis of 300 CALIFA galaxies to illustrate the power of spectral synthesis applied to data-cubes. The selected results highlighted here include: (a) The evolution of the mass-metallicity and mass-density-metallicity relations, as traced by the mean stellar metallicity. (b) A comparison of star formation rates obtained from Hα to those derived from full spectral fits. (c) The relation between star formation rate and dust optical depth within galaxies, which turns out to mimic the Schmidt-Kennicutt law. (d) PCA tomography experiments.


Sign in / Sign up

Export Citation Format

Share Document