scholarly journals Circumstellar Medium Constraints on the Environment of Two Nearby Type Ia Supernovae: SN 2017cbv and SN 2020nlb

2021 ◽  
Vol 922 (1) ◽  
pp. 21
Author(s):  
D. J. Sand ◽  
S. K. Sarbadhicary ◽  
C. Pellegrino ◽  
K. Misra ◽  
R. Dastidar ◽  
...  

Abstract We present deep Chandra X-ray observations of two nearby Type Ia supernovae, SN 2017cbv and SN 2020nlb, which reveal no X-ray emission down to a luminosity L X ≲ 5.3 × 1037 and ≲ 5.4 × 1037 erg s−1 (0.3–10 keV), respectively, at ∼16–18 days after the explosion. With these limits, we constrain the pre-explosion mass-loss rate of the progenitor system to be M ̇ < 7.2 × 10−9 and < 9.7 × 10−9 M ⊙ yr−1 for each (at a wind velocity v w = 100 km s−1 and a radius of R ≈ 1016 cm), assuming any X-ray emission would originate from inverse Compton emission from optical photons upscattered by the supernova shock. If the supernova environment was a constant-density medium, we would find a number density limit of n CSM < 36 and < 65 cm−3, respectively. These X-ray limits rule out all plausible symbiotic progenitor systems, as well as large swathes of parameter space associated with the single degenerate scenario, such as mass loss at the outer Lagrange point and accretion winds. We also present late-time optical spectroscopy of SN 2020nlb, and set strong limits on any swept up hydrogen (L Hα < 2.7 × 1037 erg s−1) and helium (L He,λ6678 < 2.7 × 1037 erg s−1) from a nondegenerate companion, corresponding to M H ≲ 0.7–2 × 10−3 M ⊙ and M He ≲ 4 × 10−3 M ⊙. Radio observations of SN 2020nlb at 14.6 days after explosion also yield a non-detection, ruling out most plausible symbiotic progenitor systems. While we have doubled the sample of normal Type Ia supernovae with deep X-ray limits, more observations are needed to sample the full range of luminosities and subtypes of these explosions, and set statistical constraints on their circumbinary environments.

Author(s):  
Chengyuan Wu ◽  
Dongdong Liu ◽  
Xiaofeng Wang ◽  
Bo Wang

Abstract The progenitor systems accounting for explosions of type Ia supernovae (SNe Ia) is still under debate. Symbiotic channel is one of the possible progenitor scenarios, in which the WDs in these systems increase in mass through wind accretion from their red giant companions. The mass-loss processes of the giants in the symbiotic systems could produce amount of circumstellar medium (CSM), and detections of interaction signals between SN ejecta and CSM can be used as an ideal way to distinguish different progenitor models. However, the density distribution and geometric structure of the CSM around the symbiotic systems remain highly uncertain. By assuming that the tidal torque from binary interaction can increase the mass-loss rate of the red giant and cause the stellar wind concentrate towards the equatorial plane, we provide a simplified method to estimate the density and the degree of deviation from spherical symmetry for the CSM. Based on the calculations of the binary evolutions of symbiotic systems using stellar evolution code MESA, we obtained the parameter space for producing SNe Ia. We found that SNe Ia could originate from symbiotic systems with massive carbon-oxygen white dwarfs (CO WDs), while the half-opening angle of the stellar wind from red giant towards the WD varies with the binary evolution, resulting in the formation of surrounding CSM with different geometric structures. The corresponding properties of ejecta-CSM interactions may be examined by spectropolarimetry observations in the future, from which one may find additional relationship between circumstellar environment of SNe Ia and their progenitor systems.


2020 ◽  
Vol 493 (4) ◽  
pp. 5617-5624
Author(s):  
Doron Kushnir ◽  
Eli Waxman

ABSTRACT The finite time, τdep, over which positrons from β+ decays of 56Co deposit energy in type Ia supernovae ejecta lead, in case the positrons are trapped, to a slower decay of the bolometric luminosity compared to an exponential decline. Significant light-curve flattening is obtained when the ejecta density drops below the value for which τdep equals the 56Co lifetime. We provide a simple method to accurately describe this ‘delayed deposition’ effect, which is straightforward to use for analysis of observed light curves. We find that the ejecta heating is dominated by delayed deposition typically from 600 to 1200 d, and only later by longer lived isotopes 57Co and 55Fe decay (assuming solar abundance). For the relatively narrow 56Ni velocity distributions of commonly studied explosion models, the modification of the light curve depends mainly on the 56Ni mass-weighted average density, 〈ρ〉t3. Accurate late-time bolometric light curves, which may be obtained with JWST far-infrared (far-IR) measurements, will thus enable to discriminate between explosion models by determining 〈ρ〉t3 (and the 57Co and 55Fe abundances). The flattening of light curves inferred from recent observations, which is uncertain due to the lack of far-IR data, is readily explained by delayed deposition in models with $\langle \rho \rangle t^{3} \approx 0.2\, \mathrm{M}_{\odot }\, (10^{4}\, \textrm{km}\, \textrm{s}^{-1})^{-3}$, and does not imply supersolar 57Co and 55Fe abundances.


2019 ◽  
Vol 484 (1) ◽  
pp. 1317-1324 ◽  
Author(s):  
J Kuuttila ◽  
M Gilfanov ◽  
I R Seitenzahl ◽  
T E Woods ◽  
F P A Vogt

2002 ◽  
Vol 187 ◽  
pp. 103-108
Author(s):  
X.-D. Li ◽  
E. P. J. van den Heuvel

Supersoft X-ray sources (hereafter SSS) are a class of luminous (bolometric luminosity ~ 1037 − 1038 erg s−1) objects with a characteristic radiation temperature of 30 to 60 eV (Hasinger 1994; Kahabka & Trümper 1996). The most popular model for SSS is that they are massive white dwarfs steadily burning nuclear fuel accreted from a more massive binary companion at a rate near or above the Eddington limit (van den Heuvel et al. 1992).


2019 ◽  
Vol 4 (2) ◽  
pp. 188-195 ◽  
Author(s):  
O. Graur ◽  
K. Maguire ◽  
R. Ryan ◽  
M. Nicholl ◽  
A. Avelino ◽  
...  

1997 ◽  
Author(s):  
Peter A. Milne ◽  
Lih-Sin The ◽  
Mark D. Leising

2007 ◽  
Vol 16 (02n03) ◽  
pp. 207-217 ◽  
Author(s):  
M. J. REBOUÇAS

A nontrivial topology of the spatial section of the universe is an observable which can be probed for all homogeneous and isotropic universes, without any assumption on the cosmological density parameters. We discuss how one can use this observable to set constraints on the density parameters of the universe by using a specific spatial topology along with type Ia supernovae and X-ray gas mass fraction data sets.


Sign in / Sign up

Export Citation Format

Share Document