scholarly journals Prospects for the Detection of the Prompt Very-high-energy Emission from γ-ray Bursts with the High Altitude Detection of Astronomical Radiation Experiment

2021 ◽  
Vol 923 (1) ◽  
pp. 112
Author(s):  
Guang-Guang Xin ◽  
Yu-Hua Yao ◽  
Xiang-Li Qian ◽  
Cheng Liu ◽  
Qi Gao ◽  
...  

Abstract The observation of very-high-energy (VHE; > 10 GeV) γ-ray emission from γ-ray bursts (GRBs), especially in the prompt phase, will provide critical information for understanding many aspects of their nature including the physical environment, the relativistic bulk motion, the mechanisms of particle acceleration of GRBs, and for studying Lorentz invariance violation, etc. For the afterglow phase, the highest-energy photons detected to date by the imaging atmospheric Cherenkov telescopes extend to the TeV regime. However, for the prompt phase, years of efforts in searching for the VHE emission has yielded no statistically significant detections. A wide field of view and large effective area above tens of GeV are essential for detecting the VHE emissions from GRBs in the prompt phase. The High Altitude Detection of Astronomical Radiation (HADAR) experiment has such merits. In this paper, we report the estimates of its expected annual GRB detection rate, which are obtained by combining the performance of the HADAR instrument with the theoretical calculations based on a phenomenological model to generate the pseudo-GRB population. The expected detectable gamma-ray signal from GRBs above the background is then obtained to give the detection rate. In the spectral model, an extra component is assigned to every GRB event in addition to the Band function. The results indicate that if the energy of the cutoff due to internal absorption is higher than 50 GeV, the detection rate for GRBs for the HADAR experiment is approximately two or three GRBs per year, which varies slightly depending upon the characteristics of the extra component.

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Petr Satunin

AbstractWe present new two-sided constraints on the Lorentz Invariance violation energy scale for photons with quartic dispersion relation from recent gamma ray observations by the Tibet-AS$$\gamma $$ γ and LHAASO experiments. The constraints are based on the consideration of the processes of photon triple splitting (superluminal scenario) and the suppression of shower formation (subluminal). The constraints in the subluminal scenario are better than the pair production constraints and are the strongest in the literature.


2016 ◽  
Vol 25 (01) ◽  
pp. 1650006 ◽  
Author(s):  
Yi Zhao ◽  
Qiang Yuan ◽  
Xiao-Jun Bi ◽  
Feng-Rong Zhu ◽  
Huan-Yu Jia

The detectability of active galactic nuclei (AGN), a major class of [Formula: see text]-ray emitters in the sky, by the newly planned Chinese project, Large High Altitude Air Shower Observatory (LHAASO), is investigated. The expectation is primarily based on the AGN catalog of Fermi Large Area Telescope (Fermi-LAT), with an extrapolation to the very high energy (VHE) range taking into account the absorption effect by the extragalactic background light (EBL). It is found that LHAASO may have the potential to detect more than several tens of the Fermi detected AGN, basically BL Lacertaes, with one-year sky survey. The capability of measuring the energy spectrum and light curve are also discussed.


2014 ◽  
Vol 788 (2) ◽  
pp. 165 ◽  
Author(s):  
K. Hada ◽  
M. Giroletti ◽  
M. Kino ◽  
G. Giovannini ◽  
F. D'Ammando ◽  
...  

2008 ◽  
Author(s):  
Diego F. Torres ◽  
Felix A. Aharonian ◽  
Werner Hofmann ◽  
Frank Rieger

2014 ◽  
Vol 28 ◽  
pp. 1460169 ◽  
Author(s):  
DMITRY KHANGULYAN ◽  
SERGEY V. BOGOVALOV ◽  
FELIX A. AHARONIAN

Observations of the binary pulsar PSR B1259-63/LS2883 in the high energy and very high energy domains have revealed a few quite unusual features. One of the most puzzling phenomena is the bright GeV flare detected with Fermi/LAT in 2011 January, approximately one month after periastron passage. Since the maximum luminosity in the high energy band during the flare nearly achieved the level of the pulsar spin-down energy losses, it is likely that the particles, responsible for this emission component, had a strongly anisotropic distribution, which resulted in the emission enhancement. One of the most prolific scenarios for such an emission enhancement is the Doppler boosting, which is realized in sources with relativistic motions. Interestingly, a number of hydrodynamical simulations have predicted a formation of highly relativistic outflows in binary pulsar systems, therefore scenarios, involving relativistic boosting, are very natural for these systems. However a more detailed analysis of such a possibility, presented in this study, reveals certain limitations which put strict constraints on the maximum luminosity achievable in this scenario. These constraints render the "Doppler boosting" scenario to be less feasible, especially for the synchrotron models.


Sign in / Sign up

Export Citation Format

Share Document