scholarly journals Two-sided constraints on Lorentz invariance violation from Tibet-AS$$\gamma $$ and LHAASO very-high-energy photon observations

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Petr Satunin

AbstractWe present new two-sided constraints on the Lorentz Invariance violation energy scale for photons with quartic dispersion relation from recent gamma ray observations by the Tibet-AS$$\gamma $$ γ and LHAASO experiments. The constraints are based on the consideration of the processes of photon triple splitting (superluminal scenario) and the suppression of shower formation (subluminal). The constraints in the subluminal scenario are better than the pair production constraints and are the strongest in the literature.

2012 ◽  
Vol 27 (19) ◽  
pp. 1250104 ◽  
Author(s):  
IMAN MOTIE ◽  
SHE-SHENG XUE

Due to quantum gravity fluctuations at the Planck scale, the space–time manifold is no longer continuous, but discretized. As a result the Lorentz symmetry is broken at very high energies. In this paper, we study the neutrino oscillation pattern due to the Lorentz invariance violation (LIV), and compare it with the normal neutrino oscillation pattern due to neutrino masses. We find that at very high energies, neutrino oscillation pattern is very different from the normal one. This could provide an possibility to study the Lorentz invariance violation by measuring the oscillation pattern of very high energy neutrinos from a cosmological distance.


2020 ◽  
Vol 633 ◽  
pp. A143 ◽  
Author(s):  
C. Perennes ◽  
H. Sol ◽  
J. Bolmont

Context. High-energy photons emitted by flaring active galactic nuclei (AGNs) have been used for many years to constrain modified dispersion relations in vacuum encountered in the context of quantum gravity phenomenology. In such studies, done in the GeV–TeV range, energy-dependent delays (spectral lags) are searched for, usually neglecting any source-intrinsic time delay. Aims. With the aim being to distinguish Lorentz invariance violation (LIV) effects from lags generated at the sources themselves, a detailed investigation into intrinsic spectral lags in flaring AGNs above 100 GeV is presented in the frame of synchrotron-self-Compton scenarios for their very-high-energy (VHE) emission. Methods. A simple model of VHE flares in blazars is proposed, allowing to explore the influence of the main physical parameters describing the emitting zones on intrinsic delays. Results. For typical conditions expected in TeV blazars, significant intrinsic lags are obtained, which can dominate over LIV effects, especially at low redshifts, and should therefore be carefully disentangled from any extrinsic lags. Moreover, two main regimes are identified with characteristic spectral lags, corresponding to long-lasting and fast particle acceleration. Conclusions. Such intrinsic spectral lags should be detected with new-generation instruments at VHE such as the Cherenkov Telescope Array which begins operation in a few years. This will provide original constraints on AGN flare models and open a new era for LIV searches in the photon sector.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1419 ◽  
Author(s):  
José Manuel Carmona ◽  
José Luis Cortés ◽  
José Javier Relancio ◽  
Maykoll Anthonny Reyes

The observation of cosmic neutrinos up to 2 PeV is used to put bounds on the energy scale of Lorentz invariance violation through the loss of energy due to the production of e + e - pairs in the propagation of superluminal neutrinos. A model to study this effect, which allows us to understand qualitatively the results of numerical simulations, is presented.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1298
Author(s):  
José Manuel Carmona ◽  
José Luis Cortés ◽  
Lucía Pereira ◽  
José Javier Relancio

We analyze the kinematics of electron-positron production in a photon-photon interaction when one has a modification of the special relativistic kinematics as a power expansion in the inverse of a new high-energy scale. We derive the equation for the threshold energy of this reaction to first order in this expansion, including the effects due to a modification of the energy-momentum conservation equation. In contrast with the Lorentz invariance violation case, a scale of the order of a few TeV is found to be compatible with the observations of very high-energy cosmic gamma rays in the case of a modification compatible with the relativity principle.


2021 ◽  
Vol 923 (1) ◽  
pp. 112
Author(s):  
Guang-Guang Xin ◽  
Yu-Hua Yao ◽  
Xiang-Li Qian ◽  
Cheng Liu ◽  
Qi Gao ◽  
...  

Abstract The observation of very-high-energy (VHE; > 10 GeV) γ-ray emission from γ-ray bursts (GRBs), especially in the prompt phase, will provide critical information for understanding many aspects of their nature including the physical environment, the relativistic bulk motion, the mechanisms of particle acceleration of GRBs, and for studying Lorentz invariance violation, etc. For the afterglow phase, the highest-energy photons detected to date by the imaging atmospheric Cherenkov telescopes extend to the TeV regime. However, for the prompt phase, years of efforts in searching for the VHE emission has yielded no statistically significant detections. A wide field of view and large effective area above tens of GeV are essential for detecting the VHE emissions from GRBs in the prompt phase. The High Altitude Detection of Astronomical Radiation (HADAR) experiment has such merits. In this paper, we report the estimates of its expected annual GRB detection rate, which are obtained by combining the performance of the HADAR instrument with the theoretical calculations based on a phenomenological model to generate the pseudo-GRB population. The expected detectable gamma-ray signal from GRBs above the background is then obtained to give the detection rate. In the spectral model, an extra component is assigned to every GRB event in addition to the Band function. The results indicate that if the energy of the cutoff due to internal absorption is higher than 50 GeV, the detection rate for GRBs for the HADAR experiment is approximately two or three GRBs per year, which varies slightly depending upon the characteristics of the extra component.


2014 ◽  
Vol 788 (2) ◽  
pp. 165 ◽  
Author(s):  
K. Hada ◽  
M. Giroletti ◽  
M. Kino ◽  
G. Giovannini ◽  
F. D'Ammando ◽  
...  

2008 ◽  
Author(s):  
Diego F. Torres ◽  
Felix A. Aharonian ◽  
Werner Hofmann ◽  
Frank Rieger

Sign in / Sign up

Export Citation Format

Share Document