scholarly journals The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae

2021 ◽  
Vol 255 (2) ◽  
pp. 29
Author(s):  
Steve Schulze ◽  
Ofer Yaron ◽  
Jesper Sollerman ◽  
Giorgos Leloudas ◽  
Amit Gal ◽  
...  
2020 ◽  
Vol 500 (2) ◽  
pp. 1557-1574
Author(s):  
Ivan K Baldry ◽  
Tricia Sullivan ◽  
Raffaele Rani ◽  
Sebastian Turner

ABSTRACT The size–mass galaxy distribution is a key diagnostic for galaxy evolution. Massive compact galaxies are potential surviving relics of a high-redshift phase of star formation. Some of these could be nearly unresolved in Sloan Digital Sky Survey (SDSS) imaging and thus not included in galaxy samples. To overcome this, a sample was selected from the combination of SDSS and UKIRT Infrared Deep Sky Survey (UKIDSS) photometry to r < 17.8. This was done using colour–colour selection, and then by obtaining accurate photometric redshifts (photo-z) using scaled flux matching (SFM). Compared to spectroscopic redshifts (spec-z), SFM obtained a 1σ scatter of 0.0125 with only 0.3 per cent outliers (|Δln (1 + z)| > 0.06). A sample of 163 186 galaxies was obtained with 0.04 < z < 0.15 over $2300\, {\rm deg}^2$ using a combination of spec-z and photo-z. Following Barro et al. log Σ1.5 = log M* − 1.5log r50, maj was used to define compactness. The spectroscopic completeness was 76 per cent for compact galaxies (log Σ1.5 > 10.5) compared to 92 per cent for normal-sized galaxies. This difference is primarily attributed to SDSS ‘fibre collisions’ and not the completeness of the main galaxy sample selection. Using environmental overdensities, this confirms that compact quiescent galaxies are significantly more likely to be found in high-density environments compared to normal-sized galaxies. By comparison with a high-redshift sample from 3D-HST, log Σ1.5 distribution functions show significant evolution, with this being a compelling way to compare with simulations such as EAGLE. The number density of compact quiescent galaxies drops by a factor of about 30 from z ∼ 2 to log (n/Mpc−3) = − 5.3 ± 0.4 in the SDSS–UKIDSS sample. The uncertainty is dominated by the steep cut off in log Σ1.5, which is demonstrated conclusively using this complete sample.


2019 ◽  
Vol 489 (4) ◽  
pp. 5802-5821 ◽  
Author(s):  
M Vincenzi ◽  
M Sullivan ◽  
R E Firth ◽  
C P Gutiérrez ◽  
C Frohmaier ◽  
...  

ABSTRACT The design and analysis of time-domain sky surveys require the ability to simulate accurately realistic populations of core-collapse supernova (SN) events. We present a set of spectral time-series templates designed for this purpose, for both hydrogen-rich (Type II, IIn, and IIb) and stripped-envelope (Type Ib, Ic, and Ic-BL) core-collapse SNe. We use photometric and spectroscopic data for 67 core-collapse SNe from the literature, and for each generate a time-series spectral template. The techniques used to build the templates are fully data driven with no assumption of any parametric form or model for the light curves. The template-building code is open source, and can be applied to any transient for which well-sampled multiband photometry and multiple spectroscopic observations are available. We extend these spectral templates into the near-ultraviolet to λ ≃ 1600 Å using observer-frame ultraviolet photometry. We also provide a set of templates corrected for host galaxy dust extinction, and provide a set of luminosity functions that can be used with our spectral templates in simulations. We give an example of how these templates can be used by integrating them within the popular SN simulation package snana, and simulating core-collapse SNe in photometrically selected cosmological Type Ia SN samples, prone to contamination from core-collapse events.


2020 ◽  
Vol 500 (4) ◽  
pp. 5142-5158
Author(s):  
C Frohmaier ◽  
C R Angus ◽  
M Vincenzi ◽  
M Sullivan ◽  
M Smith ◽  
...  

ABSTRACT We present measurements of the local core-collapse supernova (CCSN) rate using SN discoveries from the Palomar Transient Factory (PTF). We use a Monte Carlo simulation of hundreds of millions of SN light-curve realizations coupled with the detailed PTF survey detection efficiencies to forward model the SN rates in PTF. Using a sample of 86 CCSNe, including 26 stripped-envelope SNe (SESNe), we show that the overall CCSN volumetric rate is $r^\mathrm{CC}_v=9.10_{-1.27}^{+1.56}\times 10^{-5}\, \text{SNe yr}^{-1}\, \text{Mpc}^{-3}\, h_{70}^{3}$ at 〈z〉 = 0.028, and the SESN volumetric rate is $r^\mathrm{SE}_v=2.41_{-0.64}^{+0.81}\times 10^{-5}\, \text{SNe yr}^{-1}\, \text{Mpc}^{-3}\, h_{70}^{3}$. We further measure a volumetric rate for hydrogen-free superluminous SNe (SLSNe-I) using eight events at z ≤ 0.2 of $r^\mathrm{SLSN-I}_v=35_{-13}^{+25}\, \text{SNe yr}^{-1}\text{Gpc}^{-3}\, h_{70}^{3}$, which represents the most precise SLSN-I rate measurement to date. Using a simple cosmic star formation history to adjust these volumetric rate measurements to the same redshift, we measure a local ratio of SLSN-I to SESN of ${\sim}1/810^{+1500}_{-94}$, and of SLSN-I to all CCSN types of ${\sim}1/3500^{+2800}_{-720}$. However, using host galaxy stellar mass as a proxy for metallicity, we also show that this ratio is strongly metallicity dependent: in low-mass (logM* < 9.5 M⊙) galaxies, which are the only environments that host SLSN-I in our sample, we measure an SLSN-I to SESN fraction of $1/300^{+380}_{-170}$ and $1/1700^{+1800}_{-720}$ for all CCSN. We further investigate the SN rates a function of host galaxy stellar mass, and show that the specific rates of all CCSNe decrease with increasing stellar mass.


2020 ◽  
Vol 501 (1) ◽  
pp. 994-1001
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey ◽  
Snehasish Bhattacharjee

ABSTRACT We use an information theoretic framework to analyse data from the Galaxy Zoo 2 project and study if there are any statistically significant correlations between the presence of bars in spiral galaxies and their environment. We measure the mutual information between the barredness of galaxies and their environments in a volume limited sample (Mr ≤ −21) and compare it with the same in data sets where (i) the bar/unbar classifications are randomized and (ii) the spatial distribution of galaxies are shuffled on different length scales. We assess the statistical significance of the differences in the mutual information using a t-test and find that both randomization of morphological classifications and shuffling of spatial distribution do not alter the mutual information in a statistically significant way. The non-zero mutual information between the barredness and environment arises due to the finite and discrete nature of the data set that can be entirely explained by mock Poisson distributions. We also separately compare the cumulative distribution functions of the barred and unbarred galaxies as a function of their local density. Using a Kolmogorov–Smirnov test, we find that the null hypothesis cannot be rejected even at $75{{\ \rm per\ cent}}$ confidence level. Our analysis indicates that environments do not play a significant role in the formation of a bar, which is largely determined by the internal processes of the host galaxy.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
M. López ◽  
I. Di Palma ◽  
M. Drago ◽  
P. Cerdá-Durán ◽  
F. Ricci

2019 ◽  
Vol 15 (S359) ◽  
pp. 37-39
Author(s):  
Benjamin L. Davis ◽  
Nandini Sahu ◽  
Alister W. Graham

AbstractOur multi-component photometric decomposition of the largest galaxy sample to date with dynamically-measured black hole masses nearly doubles the number of such galaxies. We have discovered substantially modified scaling relations between the black hole mass and the host galaxy properties, including the spheroid (bulge) stellar mass, the total galaxy stellar mass, and the central stellar velocity dispersion. These refinements partly arose because we were able to explore the scaling relations for various sub-populations of galaxies built by different physical processes, as traced by the presence of a disk, early-type versus late-type galaxies, or a Sérsic versus core-Sérsic spheroid light profile. The new relations appear fundamentally linked with the evolutionary paths followed by galaxies, and they have ramifications for simulations and formation theories involving both quenching and accretion.


2012 ◽  
Author(s):  
Nozomu Tominaga ◽  
Tomoki Morokuma ◽  
Sergei I. Blinnikov

2013 ◽  
Vol 9 (S296) ◽  
pp. 27-36
Author(s):  
Ken'ichi Nomoto

AbstractAfter the Big Bang, production of heavy elements in the early Universe takes place in the first stars and their supernova explosions. The nature of the first supernovae, however, has not been well understood. The signature of nucleosynthesis yields of the first supernovae can be seen in the elemental abundance patterns observed in extremely metal-poor stars. Interestingly, those abundance patterns show some peculiarities relative to the solar abundance pattern, which should provide important clues to understanding the nature of early generations of supernovae. We review the recent results of the nucleosynthesis yields of massive stars. We examine how those yields are affected by some hydrodynamical effects during the supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars.


Sign in / Sign up

Export Citation Format

Share Document