scholarly journals On the Identification of Individual Gravitational-wave Image Types of a Lensed System Using Higher-order Modes

2021 ◽  
Vol 923 (1) ◽  
pp. L1
Author(s):  
Justin Janquart ◽  
Eungwang Seo ◽  
Otto A. Hannuksela ◽  
Tjonnie G. F. Li ◽  
Chris Van Den Broeck

Abstract Similarly to light, gravitational waves can be gravitationally lensed as they propagate near massive astrophysical objects such as galaxies, stars, or black holes. In recent years, forecasts have suggested a reasonable chance of strong gravitational-wave lensing detections with the LIGO–Virgo–KAGRA detector network at design sensitivity. As a consequence, methods to analyze lensed detections have seen rapid development. However, the impact of higher-order modes on the lensing analyses is still under investigation. In this work, we show that the presence of higher-order modes enables the identification of individual image types for the observed gravitational-wave events when two lensed images are detected, which would lead to unambiguous confirmation of lensing. In addition, we show that higher-order mode content can be analyzed more accurately with strongly lensed gravitational-wave events.

Galaxies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 81
Author(s):  
A. Bisht ◽  
M. Prijatelj ◽  
J. Leong ◽  
E. Schreiber ◽  
C. Affeldt ◽  
...  

Modulated differential wavefront sensing (MDWS) is an alignment control scheme in the regime of beams with strong higher order transversal modes (HOMs). It is based on the differential wavefront sensing (DWS) technique. MDWS represents a significant upgrade over conventional techniques used in the presence of high HOM content as it allows for higher control bandwidths while eliminating the need of auxiliary alignment modulations, that otherwise cause loss of applied squeezing. The output port of gravitational wave (GW) interferometers (IFO) is one such place where a lot of HOMs are present. These are filtered out by a cavity called the output mode cleaner (OMC), whose alignment gets challenging due to the presence of HOMs. In this paper, we present the first demonstration of the MDWS scheme for aligning the fundamental mode from the IFO to the OMC at the gravitational wave detector-GEO 600.


2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


Author(s):  
Jeanne LIEDTKA

The value delivered by design thinking is almost always seen to be improvements in the creativity and usefulness of the solutions produced. This paper takes a broader view of the potential power of design thinking, highlighting its role as a social technology for enhancing the productivity of conversations for change across difference. Examined through this lens, design thinking can be observed to aid diverse sets of stakeholders’ abilities to work together to both produce higher order, more innovative solutions and to implement them more successfully. In this way, it acts as a facilitator of the processes of collectives, by enhancing their ability to learn, align and change together. This paper draws on both the author’s extensive field research on the use of design thinking in social sector organizations, as well as on the literature of complex social systems, to discuss implications for both practitioners and scholars interested in assessing the impact of design thinking on organizational performance.


2020 ◽  
Vol 22 (3) ◽  
pp. 19-24
Author(s):  
MARAT R. BIKTIMIROV ◽  
◽  
OLGA V. PILIPENKO ◽  
MAXIM S. SAFONOV ◽  
◽  
...  

Taking practical responsible decisions in the field of social and industrial management in the context of rapid development of digital technologies in the era of the knowledge economy is impossible without reliance on expertise. A kind of organization of activities for the production of ‘predictions’ is required, when not only an accurate assessment of the impact of certain factors and their possible interactions with each other is given, but also as a result of creative construction of scenarios for the development of processes and events, an understanding comes which factors need to be taken into account. At the same time, the expertise constantly faces criticism, calling the conclusions of experts arbitrary, unreliable and subjective. Often, expertise is confused with monitoring, evaluation, diagnosis, inspection or counseling. The authors of the article carried out a structural analysis of the content of the expertise processes in the project management vector in the digitalization era and came to the conclusion that the effectiveness of the expertise is significantly increased in case of clear regulation of this type of activity, providing the necessary status.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alex. S. Jenkins ◽  
Lara San Emeterio Alvarez ◽  
Samh Memshawy ◽  
Paolo Bortolotti ◽  
Vincent Cros ◽  
...  

AbstractNiFe-based vortex spin-torque nano-oscillators (STNO) have been shown to be rich dynamic systems which can operate as efficient frequency generators and detectors, but with a limitation in frequency determined by the gyrotropic frequency, typically sub-GHz. In this report, we present a detailed analysis of the nature of the higher order spin wave modes which exist in the Super High Frequency range (3–30 GHz). This is achieved via micromagnetic simulations and electrical characterisation in magnetic tunnel junctions, both directly via the spin-diode effect and indirectly via the measurement of the coupling with the gyrotropic critical current. The excitation mechanism and spatial profile of the modes are shown to have a complex dependence on the vortex core position. Additionally, the inter-mode coupling between the fundamental gyrotropic mode and the higher order modes is shown to reduce or enhance the effective damping depending upon the sense of propagation of the confined spin wave.


Sign in / Sign up

Export Citation Format

Share Document