Structural Behavior Of Continuous Shear Connectors In Thin Uhpc-Panels Under Shear And Transverse Loading

Author(s):  
Thomas Lechner ◽  
Oliver Fischer ◽  
Günter Seidl
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Noridah Mohamad ◽  
A. I. Khalil ◽  
A. A. Abdul Samad ◽  
W. I. Goh

This paper presents the structural behaviour of precast lightweight foam concrete sandwich panel (PFLP) under flexure, studied experimentally and theoretically. Four (4) full scale specimens with a double shear steel connector of 6 mm diameter and steel reinforcement of 9 mm diameter were cast and tested. The panel’s structural behavior was studied in the context of its ultimate flexure load, crack pattern, load-deflection profile, and efficiency of shear connectors. Results showed that the ultimate flexure load obtained from the experiment is influenced by the panel’s compressive strength and thickness. The crack pattern recorded in each panel showed the emergence of initial cracks at the midspan which later spread toward the left and right zones of the slab. The theoretical ultimate load for fully composite and noncomposite panels was obtained from the classical equations. All panel specimens were found to behave in a partially composite manner. Panels PLFP-3 and PLFP-4 with higher compressive strength and total thickness managed to obtain a higher degree of compositeness which is 30 and 32.6 percent, respectively.


ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 731-735
Author(s):  
Patricia Vanova ◽  
Vincent Kvocak ◽  
Viktoria Kozlejova ◽  
Daniel Dubecky ◽  
Ruslan Kanishchev

2006 ◽  
Vol 306-308 ◽  
pp. 1355-1360 ◽  
Author(s):  
Hyung Joong Joo ◽  
Seung Sik Lee ◽  
Soon Jong Yoon ◽  
Ju Kyung Park ◽  
Seok Goo Youn

Feasibility study on the use of newly developed FRP and concrete composite bridge deck system is conducted. To lengthen the service life of bridge deck, the steel-free bridge deck system is developed. In this deck system, shear connectors between FRP module and concrete are utilized and structural behavior of shear connectors is investigated experimentally. The result of an investigation reveals that the system is promising.


Author(s):  
Juliano Geraldo Ribeiro Neto ◽  
Gregório Sandro Vieira ◽  
Rogers de Oliveira Zoccoli

ABSTRACT: The present work aims to compare the structural behavior of steel-concrete composite-section beams for three types of shear connectors made of U hot rolled section and cold-formed sections of U and L. Experimental tests were performed with the three types of connectors associated with I section laminated steel beams and reinforced concrete slabs. For each type of connector, three push-out tests were performed, as well as six simple supported beam tests to evaluate the positive bending moment region. The results indicated that the direct shear behavior among the different types of connectors presents significant differences, however they do not significantly influence the average flexural strength of the composite beams. These, however, present considerable differences in deflections and deformations due to the stiffness differences of the connectors.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032080
Author(s):  
Patricia Vanova ◽  
Daniel Dubecky ◽  
Vincent Kvocak

Abstract Composite steel concrete bridges with embedded continuous shear connectors are one of the newer popular options for short span (up to 20 m) bridges. They can be used for both road and railway bridges and due to their low structural height, nowadays, they are also a welcome alternative for bridge reconstructions – the concrete part serves as the bridge deck as well as the main structure. Unfortunately, In the Slovak Republic, no such bridges have been built as of yet (2020). At Technical University of Kosice, Department of Steel and Timber Structures, an extensive research regarding the steel shear connectors have been launched. Its goals are to bring new, easier for construction (due to prefabrication process), more resistant with even lower structural height, and more economical (due to lesser usage of materials and quick construction) geometrical solutions for composite steel concrete bridges as well as to open and popularize this solution for developers in the Slovak Republic. In this article, one of the new types is presented. It has a cross-section in a shape of a trapezoid, with holes in all its sides, except the bottom flange. Their purpose is to create concrete studs and secure full shear transmission with higher shear resistance, but they also serve to create space for transverse reinforcing bars. Its geometrical and material characteristics are closely specified. Results and process of push-out tests performed in Laboratory of Excellent Research onto three specimens are described and compared to results of finite element analysis simulation performed in Abaqus software.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012064
Author(s):  
P Vanova ◽  
D Dubecky ◽  
V Kvocak

Abstract Continuous shear connectors in a shape of dowels are one of the newer shapes of composite steel-concrete bridges. In this article results of push-out tests of such a dowel with geometry designed at Faculty of Civil Engineering, Technical University of Kosice are presented and compared to the previous research.


2020 ◽  
Vol 6 (4) ◽  
pp. 160
Author(s):  
Adil Hadi Wardi ◽  
Gökhan Tunç ◽  
Khalil Ibraheem

Push-out tests are used to determine shear connectors’ properties where two small reinforced concrete walls are attached to the top and bottom flanges of an I-section through four shear studs located on both its flanges. In this study, the structural behavior of shear connectors was examined by testing a total of 36 push-out specimens. In these specimens, various test parameters were used. The types of shear connectors and their strengths, their connection types, and the strength of the concrete in which they were embedded were all investigated. Headed, L-shaped, and C-shaped studs were selected in this experimental study to represent different types of shear connectors. These shear connectors were assumed to be either ordinary or high strength steel-embedded in three different types of concrete: ordinary, high strength, and reactive powder concretes. In these tests, the shear connectors were connected through welding or epoxy bonding. The objective of this study was to investigate the structural behaviors of these different types of shear connectors by focusing on their shear force capacities and slip values. The test results indicate that the reactive powder concrete increased the mechanical properties of concrete as the concrete age increased. The specimens with C-shaped studs made of high-strength steel with welded studs embedded in normal weight, high strength and reactive powder concretes, generated the maximum shear resistance values.


2015 ◽  
Vol 15 (4) ◽  
pp. 23-32 ◽  
Author(s):  
Antoni Biegus ◽  
Wojciech Lorenc

Abstract Different types of shear connectors and modelling techniques are presented. Basic research conducted or presented after year 2000 is taken into consideration, following the idea of concrete dowel implemented in the form of perfobond strip at the beginning of the 1980s by F. Leonhardt. The latest research in the field of continuous shear connectors applied in bridges is highlited with special focus at the composite dowel shear connection, as it seems to be the most modern solution being strongly introduced to the industry. Final shape of composite dowel shear connection is presented.


Sign in / Sign up

Export Citation Format

Share Document