Robust End-To-End Reliability Evaluation for Industrial 5G Communication Systems

Author(s):  
Mu-Xia Sun ◽  
Yan-Fu Li
2016 ◽  
Vol 28 (4) ◽  
pp. e3058 ◽  
Author(s):  
X. An ◽  
C. Zhou ◽  
R. Trivisonno ◽  
R. Guerzoni ◽  
A. Kaloxylos ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2674
Author(s):  
Qingying Ren ◽  
Wen Zuo ◽  
Jie Xu ◽  
Leisheng Jin ◽  
Wei Li ◽  
...  

At present, the proposed microwave power detection systems cannot provide a high dynamic detection range and measurement sensitivity at the same time. Additionally, the frequency band of these detection systems cannot cover the 5G-communication frequency band. In this work, a novel microwave power detection system is proposed to measure the power of the 5G-communication frequency band. The detection system is composed of a signal receiving module, a power detection module and a data processing module. Experiments show that the detection frequency band of this system ranges from 1.4 GHz to 5.3 GHz, the dynamic measurement range is 70 dB, the minimum detection power is −68 dBm, and the sensitivity is 22.3 mV/dBm. Compared with other detection systems, the performance of this detection system in the 5G-communication frequency band is significantly improved. Therefore, this microwave power detection system has certain reference significance and application value in the microwave signal detection of 5G communication systems.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1593
Author(s):  
Ismael Amezcua Valdovinos ◽  
Patricia Elizabeth Figueroa Millán ◽  
Jesús Arturo Pérez-Díaz ◽  
Cesar Vargas-Rosales

The Industrial Internet of Things (IIoT) is considered a key enabler for Industry 4.0. Modern wireless industrial protocols such as the IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) deliver high reliability to fulfill the requirements in IIoT by following strict schedules computed in a Scheduling Function (SF) to avoid collisions and to provide determinism. The standard does not define how such schedules are built. The SF plays an essential role in 6TiSCH networks since it dictates when and where the nodes are communicating according to the application requirements, thus directly influencing the reliability of the network. Moreover, typical industrial environments consist of heavy machinery and complementary wireless communication systems that can create interference. Hence, we propose a distributed SF, namely the Channel Ranking Scheduling Function (CRSF), for IIoT networks supporting IPv6 over the IEEE 802.15.4e TSCH mode. CRSF computes the number of cells required for each node using a buffer-based bandwidth allocation mechanism with a Kalman filtering technique to avoid sudden allocation/deallocation of cells. CRSF also ranks channel quality using Exponential Weighted Moving Averages (EWMAs) based on the Received Signal Strength Indicator (RSSI), Background Noise (BN) level measurements, and the Packet Delivery Rate (PDR) metrics to select the best available channel to communicate. We compare the performance of CRSF with Orchestra and the Minimal Scheduling Function (MSF), in scenarios resembling industrial environmental characteristics. Performance is evaluated in terms of PDR, end-to-end latency, Radio Duty Cycle (RDC), and the elapsed time of first packet arrival. Results show that CRSF achieves high PDR and low RDC across all scenarios with periodic and burst traffic patterns at the cost of increased end-to-end latency. Moreover, CRSF delivers the first packet earlier than Orchestra and MSF in all scenarios. We conclude that CRSF is a viable option for IIoT networks with a large number of nodes and interference. The main contributions of our paper are threefold: (i) a bandwidth allocation mechanism that uses Kalman filtering techniques to effectively calculate the number of cells required for a given time, (ii) a channel ranking mechanism that combines metrics such as the PDR, RSSI, and BN to select channels with the best performance, and (iii) a new Key Performance Indicator (KPI) that measures the elapsed time from network formation until the first packet reception at the root.


2018 ◽  
Vol 218 ◽  
pp. 03015 ◽  
Author(s):  
Ahmad Firdausi ◽  
Galang Hakim ◽  
Mudrik Alaydrus

One of the technologies that has wireless application nowadays was 5G mobile communication.This paper presents the designing of a Tri-band microstrip antenna for targeting 5G broadband communications, This element antenna has 3x3 rectangular patches with feeding line structures are branched. With the use of double feeding proximity coupling structure, we intend to maximize antenna bandwidth, therefore the antenna cover range tri-band frequency from 40 GHz to 70 GHz. The reflection factor comparation between simulation and measurement has a minimum with respective frequency at 45.3 GHz, 57 GHz, and 66 GHz. The total measurement bandwith 11.5 Ghz. With this combination tecnique, the proposed antenna is a promising candidate for 5G communication systems.


Sign in / Sign up

Export Citation Format

Share Document