Delamination Damage Propagation Behavior of Composite Laminate Plate Under Low-Velocity Impact Using a New Adhesive Layer Model

Author(s):  
Yuan Gao ◽  
Yong Zhao ◽  
Ke Dong
Materials ◽  
2005 ◽  
Author(s):  
S. Bernhardt ◽  
M. Ramulu ◽  
A. S. Kobayashi

The low-velocity impact response of a hybrid titanium composite laminate (HTCL), known as TiGr, was compared to that of graphite/epoxy composite. The TiGr material comprised of two outer plies of titanium foil surrounding a composite core. The composite core was PIXA-M (a high temperature thermoplastic) reinforced by IM-6 graphite fibers and consolidated by an induction heating process. The impact response of TiGr was characterized by two modes of failure which differed by failure or non-failure in tension of the bottom titanium ply. The ductility of titanium caused buckling by yielding whereas the brittle adjacent composite ply lead to fracture. The maximum failure force of the material correlated well with the previously reported static flexural data, and the material outperformed the commonly used graphite/epoxy.


Sign in / Sign up

Export Citation Format

Share Document