An Experimental and Numerical Determination on Low-Velocity Impact Response of Hybrid Composite Laminate

Author(s):  
Engin Erbayrak ◽  
Ercument Ugur Yuncuoglu ◽  
Yusuf Kahraman ◽  
Beril Eker Gumus
Materials ◽  
2005 ◽  
Author(s):  
S. Bernhardt ◽  
M. Ramulu ◽  
A. S. Kobayashi

The low-velocity impact response of a hybrid titanium composite laminate (HTCL), known as TiGr, was compared to that of graphite/epoxy composite. The TiGr material comprised of two outer plies of titanium foil surrounding a composite core. The composite core was PIXA-M (a high temperature thermoplastic) reinforced by IM-6 graphite fibers and consolidated by an induction heating process. The impact response of TiGr was characterized by two modes of failure which differed by failure or non-failure in tension of the bottom titanium ply. The ductility of titanium caused buckling by yielding whereas the brittle adjacent composite ply lead to fracture. The maximum failure force of the material correlated well with the previously reported static flexural data, and the material outperformed the commonly used graphite/epoxy.


2017 ◽  
Vol 52 (7) ◽  
pp. 877-889 ◽  
Author(s):  
Aswani Kumar Bandaru ◽  
Shivdayal Patel ◽  
Suhail Ahmad ◽  
Naresh Bhatnagar

This paper presented an experimental and numerical investigation on the low velocity impact response of thermoplastic hybrid composites reinforced with Kevlar/basalt fabrics. Two hybrid and one Kevlar homogeneous composite laminates were manufactured with polypropylene as a resin. In the hybrid composites, one hybrid composite (H-1) was manufactured with alternate stacking of four layers of basalt and four layers of Kevlar and the second hybrid composite (H-2) was manufactured with four Kevlar layers on front face and four basalt layers on back face. Low velocity impact tests were performed using a drop-weight impact equipment at three different energies (25 J, 50 J and 75 J). Among the two hybrid composites H-1 hybrid composite exhibited 15.58–20.79% and 13.47–20.47% improvement in the peak force and energy absorption, respectively, than the H-2 hybrid composite. The peak force and energy absorption of Kevlar homogeneous composite was also improved by 10.07–14.37% and 5.38–11.29%, respectively, due to hybridization. A three dimensional (3D) dynamic finite element software, Abaqus/Explicit, was implemented to simulate the experimental results of low velocity impact tests. A user-defined material subroutine (VUMAT) based on Chang-Chang linear-orthotropic damage model was implemented into the finite element code. The predictions from numerical simulation were found to be in good agreement with the experimental results.


2007 ◽  
Vol 45 (9) ◽  
pp. 799-808 ◽  
Author(s):  
S.M.R. Khalili ◽  
A. Shokuhfar ◽  
K. Malekzadeh ◽  
F. Ashenai Ghasemi

2006 ◽  
Vol 129 (2) ◽  
pp. 220-226 ◽  
Author(s):  
S. Bernhardt ◽  
M. Ramulu ◽  
A. S. Kobayashi

The low-velocity impact response of a hybrid titanium composite laminate, known as TiGr, was compared to that of graphite/epoxy composite. The TiGr material comprised of two outer plies of titanium foil surrounding a composite core. The composite core was PIXA-M (a high temperature thermoplastic) reinforced by IM-6 graphite fibers and consolidated by an induction heating process. The impact response of TiGr was characterized by two modes of failure which differed by failure or nonfailure in tension of the bottom titanium ply. The ductility of titanium caused buckling by yielding whereas the brittle adjacent composite ply lead to fracture. The maximum failure force of the material correlated well with the previously reported static flexural data, and the material outperformed the commonly used graphite/epoxy.


2021 ◽  
pp. 152808372110154
Author(s):  
Ziyu Zhao ◽  
Tianming Liu ◽  
Pibo Ma

In this paper, biaxial warp-knitted fabrics were produced with different high tenacity polyester linear density and inserted yarns density. The low-velocity impact property of flexible composites made of polyurethane as matrix and biaxial warp-knitted fabric as reinforcement has been investigated. The effect of impactor shape and initial impact energy on the impact response of flexible composite is tested. The results show that the initial impact energy have minor effect on the impact response of the biaxial warp-knitted flexible composites. The impact resistance of flexible composite specimen increases with the increase of high tenacity polyester linear density and inserted yarns density. The damage morphology of flexible composite materials is completely different under different impactor shapes. The findings have theoretical and practical significance for the applications of biaxial warp-knitted flexible composite.


2021 ◽  
Vol 150 ◽  
pp. 103813
Author(s):  
Zhiqiang Fan ◽  
Tao Suo ◽  
Taoyi Nie ◽  
Peng Xu ◽  
Yingbin Liu ◽  
...  

2021 ◽  
Vol 1123 (1) ◽  
pp. 012040
Author(s):  
V. Sairam ◽  
S.Kishor Kanna ◽  
P.S.Samuel Ratna Kumar

Sign in / Sign up

Export Citation Format

Share Document