scholarly journals On the Mysid crustacean genus Heteromysis (Mysidae: Heteromysinae) of the Tasman Sea, with notes on the tribe Heteromysini

2021 ◽  
Vol 73 (1) ◽  
pp. 1-50
Author(s):  
Mikhail E. Daneliya
Keyword(s):  
2014 ◽  
Vol 27 (4) ◽  
pp. 1395-1412 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Lance M. Leslie

Abstract Over the past century, particularly after the 1960s, observations of mean maximum temperatures reveal an increasing trend over the southeastern quadrant of the Australian continent. Correlation analysis of seasonally averaged mean maximum temperature anomaly data for the period 1958–2012 is carried out for a representative group of 10 stations in southeast Australia (SEAUS). For the warm season (November–April) there is a positive relationship with the El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) and an inverse relationship with the Antarctic Oscillation (AAO) for most stations. For the cool season (May–October), most stations exhibit similar relationships with the AAO, positive correlations with the dipole mode index (DMI), and marginal inverse relationships with the Southern Oscillation index (SOI) and the PDO. However, for both seasons, the blocking index (BI, as defined by M. Pook and T. Gibson) in the Tasman Sea (160°E) clearly is the dominant climate mode affecting maximum temperature variability in SEAUS with negative correlations in the range from r = −0.30 to −0.65. These strong negative correlations arise from the usual definition of BI, which is positive when blocking high pressure systems occur over the Tasman Sea (near 45°S, 160°E), favoring the advection of modified cooler, higher-latitude maritime air over SEAUS. A point-by-point correlation with global sea surface temperatures (SSTs), principal component analysis, and wavelet power spectra support the relationships with ENSO and DMI. Notably, the analysis reveals that the maximum temperature variability of one group of stations is explained primarily by local factors (warmer near-coastal SSTs), rather than teleconnections with large-scale drivers.


2014 ◽  
Vol 165 ◽  
pp. 1-9 ◽  
Author(s):  
Claire M. Thompson ◽  
Michael J. Ellwood

2014 ◽  
Vol 164 ◽  
pp. 84-94 ◽  
Author(s):  
C.M. Thompson ◽  
M.J. Ellwood ◽  
S.G. Sander

1999 ◽  
Vol 33 (1) ◽  
pp. 55-60
Author(s):  
C.T. Tindle ◽  
G.E.J.

A summary of participation of the New Zealand group in the ATOC (Acoustic Thermometry of Ocean Climate) program over a five year period is presented. Transmissions from Heard Island were observed in the Tasman Sea during the Heard Island Feasibility Test in 1991. The California-New Zealand underwater sound path was verified with explosive sources in 1992. Single hydrophone observations were made of transmissions to New Zealand from California from an electrically driven source first suspended beneath a floating platform in 1994 and later placed on the ocean bottom at Pioneer Seamount in 1995. Results from these experiments show that acoustic propagation to ranges of order 10 Mm appears to be characterised by large fluctuations occurring with a time scale of a few minutes.


Sign in / Sign up

Export Citation Format

Share Document